
Bioinformatics Programming 2013

Problem 1

Installing Python

Why Python?

Rosalind problems can be solved using any programming language. Our language

of choice is Python. Why? Because it's simple, powerful, and even funny. You'll

see what we mean.

If you don't already have Python software, please download and install the appropriate version for

your platform (Windows, Linux or Mac OS X). Please install Python of version 2.x (not 3.x) — it has

more libraries support and many well-written guides.

After completing installation, launch IDLE (default Python development environment; it's usually

installed with Python, however you may need to install it separately on Linux).

You'll see a window containing three arrows, like so:

>>>

The three arrows are Python's way of saying that it is ready to serve your every need. You are in

interactive mode, meaning that any command you type will run immediately. Try typing 1+1 and

see what happens.

Of course, to become a Rosalind pro, you will need to write programs having more than one line.

So select File → New Window from the IDLE menu. You can now type code as you would into a

text editor. For example, type the following:

print "Hello, World!"

Select File → Save to save your creation with an appropriate name (e.g., hello.py).

To run your program, select Run → Run Module. You'll see the result in the interactive mode

window (Python Shell).

Congratulations! You just ran your first program in Python!

Problem

After downloading and installing Python, type import this into the Python command line and see

what happens. Then, click the "Download dataset" button below and copy the Zen of Python into the

space provided.

Problem 2

http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/
http://wiki.python.org/moin/BeginnersGuide/Download
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/idle/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/idle/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/

Variables and Some Arithmetic

Variables and Some Arithmetic

One of the most important features of any programming language is its ability to

manipulate variables. A variable is just a name that refers to a value; you can

think of a variable as a box that stores a piece of data.

In Python, the basic data types are strings and numbers. There are two types of numbers: integers

(both positive and negative) and floats (fractional numbers with a decimal point). You can assign

numbers to variables very easily. Try running the following program:

a = 324

b = 24

c = a - b

print 'a - b is', c

In the above code, a, b, and c are all integers, and 'a - b is' is a string. The result of this program is

to print:

a - b is 300

You can now use all common arithmetic operations involving numbers:

Addition: 2 + 3 == 5

Subtraction: 5 - 2 == 3

Multiplication: 3 * 4 == 12

Division: 15 / 3 == 5

Division remainder: 18 % 5 == 3

Exponentiation: 2 ** 3 == 8

It is important to note that if you try to divide two integers, Python always rounds down the result

(so 18/5 == 3).

To obtain a precise result for this division, you need to indicate floating point division; either of the

following expressions results in a "float" data type: 18.0/5 == 3.6 or float(18)/5 == 3.6

In Python, the single equals sign (=) means "assign a value to a variable". For example, a = 3

assigns 3 to the integer a. In order to denote equality, Python uses the double equals sign (==).

In Python, a string is an ordered sequence of letters, numbers and other characters. You can

create string variables just like you did with :

a = "Hello"

b = "World"

Notice that the string must be surrounded by " or ' (but not a mix of both). You can use quotes

inside the string, as long as you use the opposite type of quotes to surround the string, e.g., a =

"Monty Python's Flying Circus" or b = 'Project "Rosalind"'.

String operations differ slightly from operations on numbers:

a = 'Rosalind'

b = 'Franklin'

http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/

c = '!'
print a + ' ' + b + c*3

Output:

Rosalind Franklin!!!

Problem

Given: Two positive integers and , each less than 1000.

Return: The integer corresponding to the square of the hypotenuse of the right triangle whose legs

have lengths and .

Notes:

1. The dataset changes every time you click "Download dataset".

2. We check only your final answer to the downloaded dataset in the box below, not your code itself.

If you would like to provide your code as well, you may use the upload tool. Please also note that

the correct answer to this problem will not in general be 34; it is simply an example of what you

should return in the specific case that the legs of the triangle have length 3 and 5.

Sample Dataset

3 5

Sample Output

34

Problem 3

Strings and Lists

Strings and lists

We've already seen numbers and strings, but Python also has variable types that

can hold more than one piece of data at a time. The simplest such variable is a

list.

You can assign data to a list in the following way: list_name = [item_1, item_2, ...,

item_n]. The items of the list can be of any other type: integer, float, string. You even explore your

inner Zen and make lists of lists!

Any item in a list can be accessed by its index, or the number that indicates its place in the list.

For example, try running the following code:

a b

a b

http://rosalind.info/glossary/python/

tea_party = ['March Hare', 'Hatter', 'Dormouse', 'Alice']

print tea_party[2]

Your output should be:

Dormouse

Note that the output was not Hatter, as you might have guessed. This is because in Python,

indexing begins with 0, not 1. This property is called 0-based numbering, and it's shared by many

programming languages.

You can easily change existing list items by reassigning them. Try running the following:

tea_party[1] = 'Cheshire Cat'

print tea_party

This code should output the list with "Hatter" replaced by "Cheshire Cat":

March Hare, Cheshire Cat, Dormouse, Alice

You can also add items to the end of an existing list by using the function append():

tea_party.append('Jabberwocky')

print tea_party

This code outputs the following:

March Hare, Cheshire Cat, Dormouse, Alice, Jabberwocky

If you need to obtain only some of a list, you can use the notation list_name[a:b] to get only

those from index a up to but not including index b. For example, tea_party[1:3] returns

Cheshire Cat, Dormouse, not Cheshire Cat, Dormouse, Alice. This process is called "list

slicing".

If the first index of the slice is unspecified, then Python assumes that the slice begins with the

beginning of the list (i.e., index 0); if the second index of the slice is unspecified, then you will

obtain the items at the end of the list. For example, tea_party[:2] returns March Hare,

Cheshire Cat and tea_party[3:] returns Alice, Jabberwocky.

You can also use negative indices to count items backtracking from the end of the list. So

tea_party[-2:] returns the same output as tea_party[3:]: Alice, Jabberwocky.

Finally, Python equips you with the magic ability to slice strings the same way that you slice lists.

A string can be considered as a list of characters, each of which having its own index starting from

0. For example, try running the following code:

a = 'flimsy'

b = 'miserable'

c = b[0:1] + a[2:]

print c

This code will output the string formed by the first character of miserable and the last four

characters of flimsy:

http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/

mimsy

Problem

Given: A string of length at most 200 letters and four integers , , and .

Return: The slice of this string from indices through and through (with space in between),

inclusively.

Sample Dataset

HumptyDumptysatonawallHumptyDumptyhadagreatfallAlltheKingshorsesandallt

heKingsmenCouldntputHumptyDumptyinhisplaceagain.

22 27 97 102

Sample Output

Humpty Dumpty

Problem 4

Conditions and Loops

Conditions and Loops

If you need Python to choose between two actions, then you can use an

if/else statement. Try running this example code:

a = 42

if a < 10:

 print 'the number is less than 10'

else:

 print 'the number is greater or equal to 10'

Note the indentation and punctuation (especially the colons), because they are important.

If we leave out an else, then the program continues on. Try running this program with different

initial values of a and b:

if a + b == 4:

 print 'printed when a + b equals four'

print 'always printed'

If you want to repeat an action several times, you can use a while loop. The following program

s a b c d

a b c d

http://rosalind.info/glossary/python/

prints Hello once, then adds 1 to the greetings counter. It then prints Hello twice because

greetings is equal to 2, then adds 1 to greetings. After printing Hello three times,

greetings becomes 4, and the while condition of greetings <= 3 is no longer satisfied, so

the program would continue past the while loop.

greetings = 1

while greetings <= 3:

 print 'Hello! ' * greetings

 greetings = greetings + 1

Be careful! If you accidentally create an infinite loop, your program will freeze and you will have to

abort it. Here's an example of an infinite loop. Make sure you see why it will never exit the while

loop:

greetings = 1

while greetings <= 3:

 print 'Hello! ' * greetings

 greetings = greetings + 0 # Bug here

If you want to carry out some action on every element of a list, the for loop will be handy

names = ['Alice', 'Bob', 'Charley']

for name in names:

 print 'Hello, ' + name

And if you want to repeat an action exactly times, you can use the following template:

n = 10

for i in range(n):

 print i

In the above code, range is a function that creates a list of integers between and , where is

not included.

Finally, try seeing what the following code prints when you run it:

print range(5, 12)

More information about loops and conditions can be found in the Python documentation.

Problem

Given: Two positive integers and ().

Return: The sum of all odd integers from through , inclusively.

Sample Dataset

100 200

Sample Output

n

0 n n

a b a < b < 10000

a b

http://docs.python.org/2/tutorial/controlflow.html

7500

Hint

You can use a % 2 == 1 to test if a is odd.

Problem 5

Working with Files

Reading and Writing

In Rosalind, sample datasets are given as files. Python has a lot of functions for

reading and writing information in files.

To access a file, you must first open it. To do so, you can use the open()

function, which takes two parameters: the name of the target file and the mode. Three modes are

available:

r - read mode (the file is opened for reading)

w - write mode (the file is opened for writing, and if a file having the same name exists, it will

be erased)

a - append mode (the file is opened for appending, which means that data is only to be added

to the existing data in the file)

f = open('input.txt', 'r')

This code told Python to open the file input.txt in r mode and store the result of this operation

in a file object called f.

To obtain data from the file object you created, you can apply the following methods:

The command f.read(n) returns bytes of data from the file as a string. When the size

parameter is omitted, the entire contents of the file will be read and returned.

The command f.readline() takes a single line from the file. Every line (except the last line of

file) terminates in a newline character (\n). To remove this character from the end of a line you

have read, use the .strip() method. Note that every time you call .readline() it takes the

next line in the file.

The command f.readlines() returns a list containing every line in the file. If you need to obtain a

particular line, you can use a list item index, e.g., f.readlines()[2] returns the third line of the

file object f (don't forget that Python utilizes 0-based numbering!)

An alternative way to read lines is to loop over the file object.

for line in f:

 print line

n

http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/
http://rosalind.info/glossary/python/

Using this loop, you can do anything you need with every line in the file.

If the data in the file are not separated by new lines but rather by whitespace, commas, or any

other delimeter, then all three commands above will return the data only in the form of lines. As a

workaround, you can use the command line.split(). It uses whitespace in addition to \n as

delimeters by default, and runs of the same delimiter are regarded as a single separating space.

For example,

'Beautiful is better than ugly.\n'.split() returns ['Beautiful', 'is', 'better',

'than', 'ugly.']

You can even specify the delimiter as a parameter of line.split():

'Explicit, is better, than implicit.'.split(",") returns ['Explicit', ' is

better', ' than implicit.']

Another convenient command for file parsing is .splitlines(). It returns a list of the lines in the

string, breaking at line boundaries. Line breaks are not included.

'Simple is\nbetter than\ncomplex.\n'.splitlines() returns ['Simple is', 'better

than', 'complex.']

When you at last complete all your calculations and obtain a result, you need to store it

somewhere. To save a file, output the desired file in write mode (if there is no such file, it will be

created automatically):

f = open('output.txt', 'w')

You can then write your data using .write() method.

f.write('Any data you want to write into file')

The command f.write(string) writes the contents of string to file f. If you want to write

something other than a string (an integer say), you must first convert it to a string by using the

function str().

inscription = ['Rosalind Elsie Franklin ', 1920, 1958]

s = str(inscription)

f.write(s)

You also can write list items into a file one at a time by using a for loop:

for i in inscription:

 output.write(str(i) + '\n')

Adding \n to str(i) means that every item will start with a new line.

When you are finished writing file, don't forget that you must close it using the command

f.close(). It's a good habit to get into.

Problem

Given: A file containing at most 1000 lines.

Return: A file containing all the even-numbered lines from the original file. Assume 1-based

numbering of lines.

Sample Dataset

B̀ravely bold Sir Robin rode forth from Camelot

Yes, brave Sir Robin turned about

He was not afraid to die, O brave Sir Robin

And gallantly he chickened out

He was not at all afraid to be killed in nasty ways

Bravely talking to his feet

Brave, brave, brave, brave Sir Robin

He beat a very brave retreat

Sample Output

Yes, brave Sir Robin turned about

And gallantly he chickened out

Bravely talking to his feet

He beat a very brave retreat

Problem 6

Dictionaries

Intro to Python dictionary

We've already used lists and strings to store and process bunch of data. Python

also has a variable type to matching one items (i.e. keys) to others (i.e. values)

called dictionary. Dictionary is similar to list but instead of automatic index you

provide your own index called key. You can assign data to a dictionary as follows:

phones = {'Zoe':'232-43-58', 'Alice':'165-88-56'}. As with lists for a value could be

used any type: string, number, float even dict or list. For keys you can use only strings, numbers,

floats and other immutable types. Accessing values also similar to lists:

phones = {'Zoe':'232-43-58', 'Alice':'165-88-56'}

print phones['Zoe']

Output should be:

232-43-58

Adding new value to dictionary or assigning an existent can be done the same way as you do it

with variable

phones['Zoe'] = '658-99-55'

phones['Bill'] = '342-18-25'

print phones

You should see the following:

{'Bill': '342-18-25', 'Zoe': '658-99-55', 'Alice': '165-88-56'}

Note that new 'Bill' appeared in the beginning not in the end as you might expected. The thing

is that dictionary basically does not have any ordering. New value appear in random place.

Remember that the dictionary is case-sensitive if you are using strings as keys. Keep in mind that

'key' and 'Key' are different keys:

d = {}

d['key'] = 1

d['Key'] = 2

d['KEY'] = 3

print d

Output:

{'KEY': 3, 'Key': 2, 'key': 1}

Note how we created an empty dictionary with d = {}. This could be useful in case you need to

add values to dictionary dynamically (for example, when reading a file). If you need to check is

there a key in dictionary you can use key in d syntax:

if 'Peter' in phones:

 print "We know Peter's phone"

else:

 print "We don't know Peter's phone"

Output:

We don't know Peter's phone

In case you need to delete a value from a dictionary please use del:

phones = {'Zoe':'232-43-58', 'Alice':'165-88-56'}

del phones['Zoe']

print phones

Output:

{'Alice': '165-88-56'}

Problem

Given: A string of length at most 10000 letters.

Return: How many times any word occurred in string. Each letter case (upper or lower) in word

matters. Lines in output can be in any order.

Sample Dataset

s

Figure 1. A 1900 drawing by
Edmund Wilson of onion cells at
different stages of mitosis. The
sample has been dyed, causing

We tried list and we tried dicts also we tried Zen

Sample Output

and 1

We 1

tried 3

dicts 1

list 1

we 2

also 1

Zen 1

Hints

To iterate over words in string you can split it by space:

for word in str.split(' '):

 print word

To have nice output of dictionary you can use .items() method:

for key, value in dict.items():

 print key

 print value

Problem 7

Counting DNA Nucleotides

A Rapid Introduction to Molecular Biology

Making up all living material, the cell is

considered to be the building block of life.

The nucleus, a component of most

eukaryotic cells, was identified as the

hub of cellular activity 150 years ago. Viewed under a light

microscope, the nucleus appears only as a darker region

of the cell, but as we increase magnification, we find that

the nucleus is densely filled with a stew of

macromolecules called chromatin. During mitosis

(eukaryotic cell division), most of the chromatin condenses

into long, thin strings called chromosomes. See Figure 1

http://rosalind.info/media/problems/dna/cell.jpg
http://rosalind.info/glossary/cell/
http://rosalind.info/glossary/nucleus/
http://rosalind.info/glossary/eukaryote/
http://rosalind.info/glossary/chromatin/
http://rosalind.info/glossary/mitosis/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/media/problems/dna/cell.jpg

chromatin in the cells (which soaks
up the dye) to appear in greater
contrast to the rest of the cell.

Figure 2. A sketch of DNA's primary
structure.

for a figure of cells in different stages of mitosis.

One class of the macromolecules contained in chromatin

are called nucleic acids. Early 20th century research into

the chemical identity of nucleic acids culminated with the

conclusion that nucleic acids are polymers, or repeating

chains of smaller, similarly structured molecules known as

monomers. Because of their tendency to be long and thin,

nucleic acid polymers are commonly called strands.

The nucleic acid monomer is called a nucleotide and is

used as a unit of strand length (abbreviated to nt). Each

nucleotide is formed of three parts: a sugar molecule, a

negatively charged ion called a phosphate, and a

compound called a nucleobase ("base" for short).

Polymerization is achieved as the sugar of one nucleotide

bonds to the phosphate of the next nucleotide in the chain,

which forms a sugar-phosphate backbone for the nucleic

acid strand. A key point is that the nucleotides of a

specific type of nucleic acid always contain the same sugar and phosphate molecules, and they

differ only in their choice of base. Thus, one strand of a nucleic acid can be differentiated from

another based solely on the order of its bases; this ordering of bases defines a nucleic acid's

primary structure.

For example, Figure 2 shows a strand of deoxyribose nucleic acid (DNA), in which the sugar is

called deoxyribose, and the only four choices for nucleobases are molecules called adenine (A),

cytosine (C), guanine (G), and thymine (T).

For reasons we will soon see, DNA is found in all living organisms on Earth, including bacteria; it is

even found in many viruses (which are often considered to be nonliving). Because of its importance,

we reserve the term genome to refer to the sum total of the DNA contained in an organism's

chromosomes.

Problem

A string is simply an ordered collection of symbols selected from some alphabet and formed into a

word; the length of a string is the number of symbols that it contains.

An example of a length 21 DNA string (whose alphabet contains the symbols 'A', 'C', 'G', and 'T') is

"ATGCTTCAGAAAGGTCTTACG."

Given: A DNA string of length at most 1000 nt.

Return: Four integers (separated by spaces) counting the respective number of times that the

symbols 'A', 'C', 'G', and 'T' occur in .

Sample Dataset

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC

Sample Output

20 12 17 21

s

s

http://rosalind.info/media/problems/dna/DNA_chemical_structure.png
http://rosalind.info/glossary/nucleic-acid/
http://rosalind.info/glossary/polymer/
http://rosalind.info/glossary/monomer/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/sugar/
http://rosalind.info/glossary/ion/
http://rosalind.info/glossary/phosphate/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/sugar-phosphate-backbone/
http://rosalind.info/glossary/nucleic-acid-primary-structure/
http://rosalind.info/media/problems/dna/DNA_chemical_structure.png
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/deoxyribose/
http://rosalind.info/glossary/adenine/
http://rosalind.info/glossary/cytosine/
http://rosalind.info/glossary/guanine/
http://rosalind.info/glossary/thymine/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/alphabet/
http://rosalind.info/glossary/string-length/
http://rosalind.info/glossary/dna-string/

Figure 1. Structural differences
between RNA and DNA

Problem 8

Transcribing DNA into RNA

The Second Nucleic Acid

In “Counting DNA Nucleotides”, we

described the primary structure of a

nucleic acid as a polymer of nucleotide

units, and we mentioned that the

omnipresent nucleic acid DNA is composed of a varied

sequence of four bases.

Yet a second nucleic acid exists alongside DNA in the

chromatin; this molecule, which possesses a different

sugar called ribose, came to be known as ribose nucleic

acid, or RNA. RNA differs further from DNA in that it

contains a base called uracil in place of thymine;

structural differences between DNA and RNA are shown in

Figure 1. Biologists initially believed that RNA was only

contained in plant cells, whereas DNA was restricted to

animal cells. However, this hypothesis dissipated as improved chemical methods discovered both

nucleic acids in the cells of all life forms on Earth.

The primary structure of DNA and RNA is so similar because the former serves as a blueprint for

the creation of a special kind of RNA molecule called messenger RNA, or mRNA. mRNA is

created during RNA transcription, during which a strand of DNA is used as a template for

constructing a strand of RNA by copying nucleotides one at a time, where uracil is used in place of

thymine.

In eukaryotes, DNA remains in the nucleus, while RNA can enter the far reaches of the cell to carry

out DNA's instructions. In future problems, we will examine the process and ramifications of RNA

transcription in more detail.

Problem

An RNA string is a string formed from the alphabet containing 'A', 'C', 'G', and 'U'.

Given a DNA string corresponding to a coding strand, its transcribed RNA string is formed by

replacing all occurrences of 'T' in with 'U' in .

Given: A DNA string having length at most 1000 nt.

Return: The transcribed RNA string of .

Sample Dataset

GATGGAACTTGACTACGTAAATT

t u
t u

t

t

http://rosalind.info/media/problems/rna/RNA-DNA.png
http://rosalind.info/problems/dna/
http://rosalind.info/glossary/nucleic-acid-primary-structure/
http://rosalind.info/glossary/nucleic-acid/
http://rosalind.info/glossary/polymer/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/chromatin/
http://rosalind.info/glossary/sugar/
http://rosalind.info/glossary/ribose/
http://rosalind.info/glossary/rna/
http://rosalind.info/glossary/uracil/
http://rosalind.info/glossary/thymine/
http://rosalind.info/media/problems/rna/RNA-DNA.png
http://rosalind.info/glossary/cell/
http://rosalind.info/glossary/nucleic-acid-primary-structure/
http://rosalind.info/glossary/messenger-rna/
http://rosalind.info/glossary/rna-transcription/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/nucleus/
http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/alphabet/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/string-length/
http://rosalind.info/glossary/nucleotide/

Figure 1. Base pairing across the
two strands of DNA.

Figure 2. The double helix of DNA on
the molecular scale.

Sample Output

GAUGGAACUUGACUACGUAAAUU

Problem 9

Complementing a Strand of DNA

The Secondary and Tertiary Structures of DNA

In “Counting DNA Nucleotides”, we

introduced nucleic acids, and we saw

that the primary structure of a nucleic

acid is determined by the ordering of its

nucleobases along the sugar-phosphate backbone that

constitutes the bonds of the nucleic acid polymer. Yet

primary structure tells us nothing about the larger, 3-

dimensional shape of the molecule, which is vital for a

complete understanding of nucleic acids.

The search for a complete chemical structure of nucleic

acids was central to molecular biology research in the mid-

20th Century, culminating in 1953 with a publication in

Nature of fewer than 800 words by James Watson and

Francis Crick. Consolidating a high resolution X-ray image

created by Rosalind Franklin and Raymond Gosling with a

number of established chemical results, Watson and Crick

proposed the following structure for DNA:

1. The DNA molecule is made up of two strands, running

in opposite directions.

2. Each base bonds to a base in the opposite strand.

Adenine always bonds with thymine, and cytosine

always bonds with guanine; the complement of a

base is the base to which it always bonds; see Figure

1.

3. The two strands are twisted together into a long spiral

staircase structure called a double helix; see Figure

2.

Because they dictate how bases from different strands interact with each other, (1) and (2) above

compose the secondary structure of DNA. (3) describes the 3-dimensional shape of the DNA

molecule, or its tertiary structure.

In light of Watson and Crick's model, the bonding of two complementary bases is called a base

pair (bp). Therefore, the length of a DNA molecule will commonly be given in bp instead of nt. By

complementarity, once we know the order of bases on one strand, we can immediately deduce the

sequence of bases in the complementary strand. These bases will run in the opposite order to

match the fact that the two strands of DNA run in opposite directions.

http://rosalind.info/media/problems/revc/DNA_chemical_structure.png
http://rosalind.info/media/problems/revc/DNA.png
http://rosalind.info/problems/dna/
http://rosalind.info/glossary/nucleic-acid/
http://rosalind.info/glossary/nucleic-acid-primary-structure/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/sugar-phosphate-backbone/
http://rosalind.info/glossary/polymer/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/adenine/
http://rosalind.info/glossary/thymine/
http://rosalind.info/glossary/cytosine/
http://rosalind.info/glossary/guanine/
http://rosalind.info/glossary/complementary-base/
http://rosalind.info/media/problems/revc/DNA_chemical_structure.png
http://rosalind.info/glossary/double-helix/
http://rosalind.info/media/problems/revc/DNA.png
http://rosalind.info/glossary/nucleic-acid-secondary-structure/
http://rosalind.info/glossary/nucleic-acid-tertiary-structure/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/nucleotide/

Figure 1. The growth of Fibonacci's
rabbit population for the first six
months.

Problem

In DNA strings, symbols 'A' and 'T' are complements of each other, as are 'C' and 'G'.

The reverse complement of a DNA string is the string formed by reversing the symbols of ,

then taking the complement of each symbol (e.g., the reverse complement of "GTCA" is "TGAC").

Given: A DNA string of length at most 1000 bp.

Return: The reverse complement of .

Sample Dataset

AAAACCCGGT

Sample Output

ACCGGGTTTT

Problem 10

Rabbits and Recurrence Relations

Wascally Wabbits

In 1202, Leonardo of Pisa (commonly

known as Fibonacci) considered a

mathematical exercise regarding the

reproduction of a population of rabbits. He

made the following simplifying assumptions about the

population:

1. The population begins in the first month with a pair of

newborn rabbits.

2. Rabbits reach reproductive age after one month.

3. In any given month, every rabbit of reproductive age

mates with another rabbit of reproductive age.

4. Exactly one month after two rabbits mate, they

produce one male and one female rabbit.

5. Rabbits never die or stop reproducing.

Fibonacci's exercise was to calculate how many pairs of rabbits would remain in one year. We can

see that in the second month, the first pair of rabbits reach reproductive age and mate. In the third

month, another pair of rabbits is born, and we have two rabbit pairs; our first pair of rabbits mates

again. In the fourth month, another pair of rabbits is born to the original pair, while the second pair

reach maturity and mate (with three total pairs). The dynamics of the rabbit population are

illustrated in Figure 1. After a year, the rabbit population boasts 144 pairs.

s sc s

s

sc s

http://rosalind.info/media/problems/fib/rabbit_tree.png
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/symbol/
http://rosalind.info/glossary/reverse-complement/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/media/problems/fib/rabbit_tree.png

Figure 2. Erosion at Lake Mungo in
New South Wales, which was
initiated by European rabbits in the
19th Century. Courtesy Pierre
Pouliquin.

Although Fibonacci's assumption of the rabbits' immortality

may seem a bit farfetched, his model was not unrealistic

for reproduction in a predator-free environment: European

rabbits were introduced to Australia in the mid 19th

Century, a place with no real indigenous predators for

them. Within 50 years, the rabbits had already eradicated

many plant species across the continent, leading to

irreversible changes in the Australian ecosystem and

turning much of its grasslands into eroded, practically

uninhabitable parts of the modern Outback (see Figure 2).

In this problem, we will use the simple idea of counting

rabbits to introduce a new computational topic, which

involves building up large solutions from smaller ones.

Problem

A sequence is an ordered collection of objects (usually numbers), which are allowed to repeat.

Sequences can be finite or infinite. Two examples are the finite sequence and the

infinite sequence of odd numbers . We use the notation to represent the -th

term of a sequence.

A recurrence relation is a way of defining the terms of a sequence with respect to the values of

previous terms. In the case of Fibonacci's rabbits from the introduction, any given month will contain

the rabbits that were alive the previous month, plus any new offspring. A key observation is that the

number of offspring in any month is equal to the number of rabbits that were alive two months prior. As

a result, if represents the number of rabbit pairs alive after the -th month, then we obtain the

Fibonacci sequence having terms that are defined by the recurrence relation

 (with to initiate the sequence). Although the sequence bears

Fibonacci's name, it was known to Indian mathematicians over two millennia ago.

When finding the -th term of a sequence defined by a recurrence relation, we can simply use the

recurrence relation to generate terms for progressively larger values of . This problem introduces us

to the computational technique of dynamic programming, which successively builds up solutions by

using the answers to smaller cases.

Given: Positive integers and .

Return: The total number of rabbit pairs that will be present after months if we begin with 1 pair

and in each generation, every pair of reproduction-age rabbits produces a litter of rabbit pairs (instead

of only 1 pair).

Sample Dataset

5 3

Sample Output

19

(π, − , 0, π)2√
(1, 3, 5, 7, 9, …) an n

Fn n
Fn

= +Fn Fn−1 Fn−2 = = 1F1 F2

n
n

n ≤ 40 k ≤ 5

n
k

http://rosalind.info/media/problems/fib/rabbit_erosion.png
http://rosalind.info/media/problems/fib/rabbit_erosion.png
http://rosalind.info/glossary/sequence/
http://rosalind.info/glossary/recurrence-relation/
http://rosalind.info/glossary/fibonacci-sequence/
http://rosalind.info/glossary/dynamic-programming/

Figure 1. The table above was
computed from a large number of
English words and shows for any
letter the frequency with which it
appears in those words. These
frequencies can be used to reliably
identify a piece of English text and
differentiate it from that of another
language. Taken from
http://en.wikipedia.org/wiki/File:English_letter_frequency_(frequency).svg.

Problem 11

Computing GC Content

Identifying Unknown DNA Quickly

A quick method used by early computer

software to determine the language of a

given piece of text was to analyze the

frequency with which each letter

appeared in the text. This strategy was used because

each language tends to exhibit its own letter frequencies,

and as long as the text under consideration is long

enough, software will correctly recognize the language

quickly and with a very low error rate. See Figure 1 for a

table compiling English letter frequencies.

You may ask: what in the world does this linguistic

problem have to do with biology? Although two members of

the same species will have different genomes, they still

share the vast percentage of their DNA; notably, 99.9% of

the 3.2 billion base pairs in a human genome are common

to almost all humans (i.e., excluding people having major

genetic defects). For this reason, biologists will speak of

the human genome, meaning an average-case genome

derived from a collection of individuals. Such an average case genome can be assembled for any

species, a challenge that we will soon discuss.

The biological analog of identifying unknown text arises when researchers encounter a molecule of

DNA deriving from an unknown species. Because of the base pairing relations of the two DNA

strands, cytosine and guanine will always appear in equal amounts in a double-stranded DNA

molecule. Thus, to analyze the symbol frequencies of DNA for comparison against a database, we

compute the molecule's GC-content, or the percentage of its bases that are either cytosine or

guanine.

In practice, the GC-content of most eukaryotic genomes hovers around 50%. However, because

genomes are so long, we may be able to distinguish species based on very small discrepancies in

GC-content; furthermore, most prokaryotes have a GC-content significantly higher than 50%, so

that GC-content can be used to quickly differentiate many prokaryotes and eukaryotes by using

relatively small DNA samples.

Problem

The GC-content of a DNA string is given by the percentage of symbols in the string that are 'C' or 'G'.

For example, the GC-content of "AGCTATAG" is 37.5%. Note that the reverse complement of any

DNA string has the same GC-content.

DNA strings must be labeled when they are consolidated into a database. A commonly used method

of string labeling is called FASTA format. In this format, the string is introduced by a line that begins

with '>', followed by some labeling information. Subsequent lines contain the string itself; the first line

to begin with '>' indicates the label of the next string.

http://rosalind.info/media/problems/gc/English_letter_frequency.png
http://rosalind.info/media/problems/gc/English_letter_frequency.png
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/gc-content/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/cytosine/
http://rosalind.info/glossary/guanine/
http://rosalind.info/glossary/eukaryote/
http://rosalind.info/glossary/prokaryote/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/symbol/
http://rosalind.info/glossary/reverse-complement/
http://rosalind.info/glossary/fasta-format/

In Rosalind's implementation, a string in FASTA format will be labeled by the ID "Rosalind_xxxx",

where "xxxx" denotes a four-digit code between 0000 and 9999.

Given: At most 10 DNA strings in FASTA format (of length at most 1 kbp each).

Return: The ID of the string having the highest GC-content, followed by the GC-content of that

string. Rosalind allows for a default error of 0.001 in all decimal answers unless otherwise stated;

please see the note on absolute error below.

Sample Dataset

>Rosalind_6404

CCTGCGGAAGATCGGCACTAGAATAGCCAGAACCGTTTCTCTGAGGCTTCCGGCCTTCCC

TCCCACTAATAATTCTGAGG

>Rosalind_5959

CCATCGGTAGCGCATCCTTAGTCCAATTAAGTCCCTATCCAGGCGCTCCGCCGAAGGTCT

ATATCCATTTGTCAGCAGACACGC

>Rosalind_0808

CCACCCTCGTGGTATGGCTAGGCATTCAGGAACCGGAGAACGCTTCAGACCAGCCCGGAC

TGGGAACCTGCGGGCAGTAGGTGGAAT

Sample Output

Rosalind_0808

60.919540

Note on Absolute Error

We say that a number is within an absolute error of to a correct solution if is within of the

correct solution. For example, if an exact solution is 6.157892, then for to be within an absolute

error of 0.001, we must have that , or .

Error bounding is a vital practical tool because of the inherent round-off error in representing

decimals in a computer, where only a finite number of decimal places are allotted to any number.

After being compounded over a number of operations, this round-off error can become evident. As a

result, rather than testing whether two numbers are equal with , you may wish to simply

verify that is very small.

The mathematical field of numerical analysis is devoted to rigorously studying the nature of

computational approximation.

Problem 12

Counting Point Mutations

Evolution as a Sequence of Mistakes

x y x y
x

|x − 6.157892| < 0.001 6.156892 < x < 6.158892

x = z
|x − z|

http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/absolute-error/
http://rosalind.info/glossary/numerical-analysis/

Figure 1. A point mutation in DNA
changing a C-G pair to an A-T pair.

Figure 2. The Hamming distance
between these two strings is 7.
Mismatched symbols are colored
red.

A mutation is simply a mistake that

occurs during the creation or copying of a

nucleic acid, in particular DNA. Because

nucleic acids are vital to cellular

functions, mutations tend to cause a

ripple effect throughout the cell. Although

mutations are technically mistakes, a

very rare mutation may equip the cell with a beneficial

attribute. In fact, the macro effects of evolution are

attributable by the accumulated result of beneficial

microscopic mutations over many generations.

The simplest and most common type of nucleic acid

mutation is a point mutation, which replaces one base

with another at a single nucleotide. In the case of DNA, a

point mutation must change the complementary base

accordingly; see Figure 1.

Two DNA strands taken from different organism or species genomes are homologous if they share

a recent ancestor; thus, counting the number of bases at which homologous strands differ provides

us with the minimum number of point mutations that could have occurred on the evolutionary path

between the two strands.

We are interested in minimizing the number of (point) mutations separating two species because of

the biological principle of parsimony, which demands that evolutionary histories should be as

simply explained as possible.

Problem

Given two strings and of equal length, the Hamming

distance between and , denoted , is the number

of corresponding symbols that differ in and . See Figure 2.

Given: Two DNA strings and of equal length (not

exceeding 1 kbp).

Return: The Hamming distance .

Sample Dataset

GAGCCTACTAACGGGAT

CATCGTAATGACGGCCT

Sample Output

7

Problem 13

s t
s t (s, t)dH

s t

s t

(s, t)dH

http://rosalind.info/media/problems/hamm/point_mutation.png
http://rosalind.info/media/problems/hamm/Hamming_distance.png
http://rosalind.info/glossary/mutation/
http://rosalind.info/glossary/nucleic-acid/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/cell/
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/complementary-base/
http://rosalind.info/media/problems/hamm/point_mutation.png
http://rosalind.info/glossary/homologous/
http://rosalind.info/glossary/parsimony/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/hamming-distance/
http://rosalind.info/media/problems/hamm/Hamming_distance.png
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/

Figure 1. A Punnett square
representing the possible outcomes
of crossing a heterozygous
organism (Yy) with a homozygous
recessive organism (yy); here, the
dominant allele Y corresponds to
yellow pea pods, and the recessive
allele y corresponds to green pea
pods.

Mendel's First Law

Introduction to Mendelian Inheritance

Modern laws of inheritance were first

described by Gregor Mendel (an

Augustinian Friar) in 1865. The

contemporary hereditary model, called

blending inheritance, stated that an organism must

exhibit a blend of its parent's traits. This rule is obviously

violated both empirically (consider the huge number of

people who are taller than both their parents) and

statistically (over time, blended traits would simply blend

into the average, severely limiting variation).

Mendel, working with thousands of pea plants, believed

that rather than viewing traits as continuous processes,

they should instead be divided into discrete building blocks

called factors. Furthermore, he proposed that every factor

possesses distinct forms, called alleles.

In what has come to be known as his first law (also

known as the law of segregation), Mendel stated that every

organism possesses a pair of alleles for a given factor. If an

individual's two alleles for a given factor are the same, then

it is homozygous for the factor; if the alleles differ, then the individual is heterozygous. The first

law concludes that for any factor, an organism randomly passes one of its two alleles to each

offspring, so that an individual receives one allele from each parent.

Mendel also believed that any factor corresponds to only two possible alleles, the dominant and

recessive alleles. An organism only needs to possess one copy of the dominant allele to display

the trait represented by the dominant allele. In other words, the only way that an organism can

display a trait encoded by a recessive allele is if the individual is homozygous recessive for that

factor.

We may encode the dominant allele of a factor by a capital letter (e.g.,) and the recessive allele

by a lower case letter (e.g.,). Because a heterozygous organism can possess a recessive allele

without displaying the recessive form of the trait, we henceforth define an organism's genotype to

be its precise genetic makeup and its phenotype as the physical manifestation of its underlying

traits.

The different possibilities describing an individual's inheritance of two alleles from its parents can be

represented by a Punnett square; see Figure 1 for an example.

Problem

Probability is the mathematical study of randomly occurring

phenomena. We will model such a phenomenon with a

random variable, which is simply a variable that can take a

number of different distinct outcomes depending on the result

of an underlying random process.

For example, say that we have a bag containing 3 red balls

A
a

http://rosalind.info/media/problems/iprb/220px-Punnett_Square.svg.png
http://rosalind.info/media/problems/iprb/balls_tree.png
http://rosalind.info/glossary/blending-inheritance/
http://rosalind.info/glossary/factor/
http://rosalind.info/glossary/allele/
http://rosalind.info/glossary/mendels-first-law/
http://rosalind.info/glossary/homozygous/
http://rosalind.info/glossary/heterozygous/
http://rosalind.info/glossary/dominant-allele/
http://rosalind.info/glossary/recessive-allele/
http://rosalind.info/glossary/genotype/
http://rosalind.info/glossary/phenotype/
http://rosalind.info/glossary/punnett-square/
http://rosalind.info/media/problems/iprb/220px-Punnett_Square.svg.png
http://rosalind.info/glossary/probability/
http://rosalind.info/glossary/random-variable/
http://rosalind.info/glossary/outcome/

Figure 2. The probability of any
outcome (leaf) in a probability tree
diagram is given by the product of
probabilities from the start of the tree
to the outcome. For example, the
probability that X is blue and Y is
blue is equal to (2/5)(1/4), or 1/10.

and 2 blue balls. If we let represent the random variable

corresponding to the color of a drawn ball, then the

probability of each of the two outcomes is given by

 and .

Random variables can be combined to yield new random

variables. Returning to the ball example, let model the color

of a second ball drawn from the bag (without replacing the first ball). The probability of being red

depends on whether the first ball was red or blue. To represent all outcomes of and , we therefore

use a probability tree diagram. This branching diagram represents all possible individual

probabilities for and , with outcomes at the endpoints ("leaves") of the tree. The probability of any

outcome is given by the product of probabilities along the path from the beginning of the tree; see

Figure 2 for an illustrative example.

An event is simply a collection of outcomes. Because outcomes are distinct, the probability of an

event can be written as the sum of the probabilities of its constituent outcomes. For our colored ball

example, let be the event " is blue." is equal to the sum of the probabilities of two different

outcomes: , or

(see Figure 2 above).

Given: Three positive integers , , and , representing a population containing

organisms: individuals are homozygous dominant for a factor, are heterozygous, and are

homozygous recessive.

Return: The probability that two randomly selected mating organisms will produce an individual

possessing a dominant allele (and thus displaying the dominant phenotype). Assume that any two

organisms can mate.

Sample Dataset

2 2 2

Sample Output

0.78333

Hint

Consider simulating inheritance on a number of small test cases in order to check your solution.

Problem 14

Translating RNA into Protein

The Genetic Code

X

Pr(X = red) = 3
5 Pr(X = blue) = 2

5

Y
Y

X Y

X Y

A Y Pr(A)
Pr(X = blue and Y = blue) + Pr(X = red and Y = blue) + =3

10
1

10
2
5

k m n k + m + n
k m n

http://rosalind.info/glossary/probability/
http://rosalind.info/glossary/probability-tree-diagram/
http://rosalind.info/media/problems/iprb/balls_tree.png
http://rosalind.info/glossary/probabilistic-event/

Figure 1. The human hemoglobin
molecule consists of 4 polypeptide
chains; α subunits are shown in red
and β subunits are shown in blue

Just as nucleic acids are polymers of

nucleotides, proteins are chains of

smaller molecules called amino acids;

20 amino acids commonly appear in

every species. Just as the primary

structure of a nucleic acid is given by the

order of its nucleotides, the primary

structure of a protein is the order of its amino acids. Some

proteins are composed of several subchains called

polypeptides, while others are formed of a single

polypeptide; see Figure 1.

Proteins power every practical function carried out by the

cell, and so presumably, the key to understanding life lies

in interpreting the relationship between a chain of amino

acids and the function of the protein that this chain of

amino acids eventually constructs. Proteomics is the field

devoted to the study of proteins.

How are proteins created? The genetic code, discovered throughout the course of a number of

ingenious experiments in the late 1950s, details the translation of an RNA molecule called

messenger RNA (mRNA) into amino acids for protein creation. The apparent difficulty in translation

is that somehow 4 RNA bases must be translated into a language of 20 amino acids; in order for

every possible amino acid to be created, we must translate 3-nucleobase strings (called codons)

into amino acids. Note that there are possible codons, so that multiple codons may

encode the same amino acid. Two special types of codons are the start codon (AUG), which

codes for the amino acid methionine always indicates the start of translation, and the three stop

codons (UAA, UAG, UGA), which do not code for an amino acid and cause translation to end.

The notion that protein is always created from RNA, which in turn is always created from DNA,

forms the central dogma of molecular biology. Like all dogmas, it does not always hold;

however, it offers an excellent approximation of the truth.

A eukaryotic organelle called a ribosome creates peptides by using a helper molecule called

transfer RNA (tRNA). A single tRNA molecule possesses a string of three RNA nucleotides on one

end (called an anticodon) and an amino acid at the other end. The ribosome takes an RNA

molecule transcribed from DNA (see “Transcribing DNA into RNA”), called messenger RNA

(mRNA), and examines it one codon at a time. At each step, the tRNA possessing the

complementary anticodon bonds to the mRNA at this location, and the amino acid found on the

opposite end of the tRNA is added to the growing peptide chain before the remaining part of the

tRNA is ejected into the cell, and the ribosome looks for the next tRNA molecule.

Not every RNA base eventually becomes translated into a protein, and so an interval of RNA (or an

interval of DNA translated into RNA) that does code for a protein is of great biological interest; such

an interval of DNA or RNA is called a gene. Because protein creation drives cellular processes,

genes differentiate organisms and serve as a basis for heredity, or the process by which traits are

inherited.

Problem

The 20 commonly occurring amino acids are abbreviated by using 20 letters from the English alphabet

(all letters except for B, J, O, U, X, and Z). Protein strings are constructed from these 20 symbols.

Henceforth, the term genetic string will incorporate protein strings along with DNA strings and RNA

strings.

The RNA codon table dictates the details regarding the encoding of specific codons into the amino

= 6443

http://rosalind.info/media/problems/prot/haemoglobin.png
http://rosalind.info/glossary/nucleic-acid/
http://rosalind.info/glossary/polymer/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/nucleic-acid-primary-structure/
http://rosalind.info/glossary/nucleic-acid/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/protein-primary-structure/
http://rosalind.info/glossary/polypeptide/
http://rosalind.info/media/problems/prot/haemoglobin.png
http://rosalind.info/glossary/cell/
http://rosalind.info/glossary/proteomics/
http://rosalind.info/glossary/genetic-code/
http://rosalind.info/glossary/translation/
http://rosalind.info/glossary/messenger-rna/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/codon/
http://rosalind.info/glossary/start-codon/
http://rosalind.info/glossary/stop-codon/
http://rosalind.info/glossary/central-dogma-of-molecular-biology/
http://rosalind.info/glossary/eukaryote/
http://rosalind.info/glossary/organelle/
http://rosalind.info/glossary/ribosome/
http://rosalind.info/glossary/transfer-rna/
http://rosalind.info/glossary/anticodon/
http://rosalind.info/glossary/rna-transcription/
http://rosalind.info/problems/rna/
http://rosalind.info/glossary/messenger-rna/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/heredity/
http://rosalind.info/glossary/alphabet/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/rna-codon-table/

Figure 1. The human chromosomes
stained with a probe for Alu
elements, shown in green.

acid alphabet.

Given: An RNA string corresponding to a strand of mRNA (of length at most 10 kbp).

Return: The protein string encoded by .

Sample Dataset

AUGGCCAUGGCGCCCAGAACUGAGAUCAAUAGUACCCGUAUUAACGGGUGA

Sample Output

MAMAPRTEINSTRING

Problem 15

Finding a Motif in DNA

Combing Through the Haystack

Finding the same interval of DNA in the

genomes of two different organisms (often

taken from different species) is highly

suggestive that the interval has the same

function in both organisms.

We define a motif as such a commonly shared interval of

DNA. A common task in molecular biology is to search an

organism's genome for a known motif.

The situation is complicated by the fact that genomes are riddled with intervals of DNA that occur

multiple times (possibly with slight modifications), called repeats. These repeats occur far more

often than would be dictated by random chance, indicating that genomes are anything but random

and in fact illustrate that the language of DNA must be very powerful (compare with the frequent

reuse of common words in any human language).

The most common repeat in humans is the Alu repeat, which is approximately 300 bp long and

recurs around a million times throughout every human genome (see Figure 1). However, Alu has

not been found to serve a positive purpose, and appears in fact to be parasitic: when a new Alu

repeat is inserted into a genome, it frequently causes genetic disorders.

Problem

Given two strings and , is a substring of if is contained as a contiguous collection of symbols

in (as a result, must be no longer than).

The position of a symbol in a string is the total number of symbols found to its left, including itself

(e.g., the positions of all occurrences of 'U' in "AUGCUUCAGAAAGGUCUUACG" are 2, 5, 6, 15, 17,

s

s

s t t s t
s t s

s[i]

http://rosalind.info/media/problems/subs/alu.jpg
http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/repeat/
http://rosalind.info/glossary/alu-repeat/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/media/problems/subs/alu.jpg
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/position/

and 18). The symbol at position of is denoted by .

A substring of can be represented as , where and represent the starting and ending

positions of the substring in ; for example, if = "AUGCUUCAGAAAGGUCUUACG", then =

"UGCU".

The location of a substring is its beginning position ; note that will have multiple locations

in if it occurs more than once as a substring of (see the Sample below).

Given: Two DNA strings and (each of length at most 1 kbp).

Return: All locations of as a substring of .

Sample Dataset

GATATATGCATATACTT

ATAT

Sample Output

2 4 10

Note

Different programming languages use different notations for positions of symbols in strings. Above,

we use 1-based numbering, as opposed to 0-based numbering, which is used in Python. For

= "AUGCUUCAGAAAGGUCUUACG", 1-based numbering would state that = 'A' is the first

symbol of the string, whereas this symbol is represented by in 0-based numbering. The idea of

0-based numbering propagates to substring indexing, so that becomes "GCUU" instead of

"UGCU".

Note that in some programming languages, such as Python, s[j:k] returns only fragment from index

 up to but not including index , so that s[2:5] actually becomes "UGC", not "UGCU".

Problem 16

Consensus and Profile

Finding a Most Likely Common Ancestor

In “Counting Point Mutations”, we calculated the minimum number of symbol

mismatches between two strings of equal length to model the problem of finding

the minimum number of point mutations occurring on the evolutionary path

between two homologous strands of DNA. If we instead have several homologous

strands that we wish to analyze simultaneously, then the natural problem is to find an average-case

strand to represent the most likely common ancestor of the given strands.

i s s[i]

s s[j : k] j k
s s s[2 : 5]

s[j : k] j t
s s

s t

t s

s
s[1]

s[0]
s[2 : 5]

j k

http://rosalind.info/glossary/location/
http://rosalind.info/glossary/position/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/1-based-numbering/
http://rosalind.info/glossary/0-based-numbering/
http://rosalind.info/problems/hamm/
http://rosalind.info/glossary/homologous/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/dna/

Problem

A matrix is a rectangular table of values divided into rows and columns. An matrix has

rows and columns. Given a matrix , we write to indicate the value found at the intersection of

row and column .

Say that we have a collection of DNA strings, all having the same length . Their profile matrix is a

 matrix in which represents the number of times that 'A' occurs in the th position of

one of the strings, represents the number of times that C occurs in the th position, and so on

(see below).

A consensus string is a string of length formed from our collection by taking the most common

symbol at each position; the th symbol of therefore corresponds to the symbol having the maximum

value in the -th column of the profile matrix. Of course, there may be more than one most common

symbol, leading to multiple possible consensus strings.

A T C C A G C T

G G G C A A C T

A T G G A T C T

DNA Strings A A G C A A C C

T T G G A A C T

A T G C C A T T

A T G G C A C T

A 5 1 0 0 5 5 0 0

Profile C 0 0 1 4 2 0 6 1

G 1 1 6 3 0 1 0 0

T 1 5 0 0 0 1 1 6

Consensus A T G C A A C T

Given: A collection of at most 10 DNA strings of equal length (at most 1 kbp) in FASTA format.

Return: A consensus string and profile matrix for the collection. (If several possible consensus

strings exist, then you may return any one of them.)

Sample Dataset

>Rosalind_1

ATCCAGCT

>Rosalind_2

GGGCAACT

>Rosalind_3

ATGGATCT

>Rosalind_4

AAGCAACC

>Rosalind_5

TTGGAACT

>Rosalind_6

ATGCCATT

>Rosalind_7

m × n m
n A Ai,j

i j

n
4 × n P P1,j j

P2,j j

c n
j c

j

http://rosalind.info/glossary/matrix/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/profile-matrix/
http://rosalind.info/glossary/matrix/
http://rosalind.info/glossary/position/
http://rosalind.info/glossary/consensus-string/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/profile-matrix/
http://rosalind.info/glossary/consensus-string/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/fasta-format/

Figure 1. A c.1905 photo from
Australia of a cart loaded to the hilt
with rabbit skins.

Figure 2. Western Australia's rabbit
fence is actually not the longest
fence in the world as the sign
claims. That honor goes to a 3,500
mile fence in southeastern Australia
built to keep out dingoes. Courtesy
Matt Pounsett.

ATGGCACT

Sample Output

ATGCAACT

A: 5 1 0 0 5 5 0 0

C: 0 0 1 4 2 0 6 1

G: 1 1 6 3 0 1 0 0

T: 1 5 0 0 0 1 1 6

Problem 17

Mortal Fibonacci Rabbits

Wabbit Season

In “Rabbits and Recurrence Relations”,

we mentioned the disaster caused by

introducing European rabbits into

Australia. By the turn of the 20th Century,

the situation was so out of control that the creatures could

not be killed fast enough to slow their spread (see Figure

1).

The conclusion? Build a fence! The fence, intended to

preserve the sanctity of Western Australia, was completed

in 1907 after undergoing revisions to push it back as the

bunnies pushed their frontier ever westward (see Figure 2).

If it sounds like a crazy plan, the Australians at the time

seem to have concurred, as shown by the cartoon in

Figure 3.

By 1950, Australian rabbits numbered 600 million, causing

the government to decide to release a virus (called

myxoma) into the wild, which cut down the rabbits until

they acquired resistance. In a final Hollywood twist,

another experimental rabbit virus escaped in 1991, and

some resistance has already been observed.

The bunnies will not be stopped, but they don't live forever,

and so in this problem, our aim is to expand Fibonacci's

rabbit population model to allow for mortal rabbits.

Problem

Recall the definition of the Fibonacci numbers from “Rabbits and Recurrence Relations”, which followed

the recurrence relation and assumed that each pair of rabbits reaches maturity= +Fn Fn−1 Fn−2

http://rosalind.info/media/problems/fibd/rabbit_skins.png
http://rosalind.info/media/problems/fibd/rabbit_fence.png
http://rosalind.info/problems/fib/
http://rosalind.info/media/problems/fibd/rabbit_skins.png
http://rosalind.info/media/problems/fibd/rabbit_fence.png
http://rosalind.info/media/problems/fibd/rabbit_tennis.png
http://rosalind.info/glossary/fibonacci-sequence/
http://rosalind.info/problems/fib/
http://rosalind.info/glossary/recurrence-relation/

Figure 3. An 1884 cartoon from the
Queensland Figaro proposing how
the rabbits viewed their fence.

Figure 4. A figure illustrating the
propagation of Fibonacci's rabbits if
they die after three months.

in one month and produces a single pair of offspring (one

male, one female) each subsequent month.

Our aim is to somehow modify this recurrence relation to

achieve a dynamic programming solution in the case that all

rabbits die out after a fixed number of months. See Figure 4

for a depiction of a rabbit tree in which rabbits live for three

months (meaning that they reproduce only twice before dying).

Given: Positive integers and .

Return: The total number of pairs of rabbits that will remain

after the -th month if all rabbits live for months.

Sample Dataset

6 3

Sample Output

4

Problem 18

Overlap Graphs

A Brief Introduction to Graph Theory

Networks arise everywhere in the practical world, especially in biology. Networks

are prevalent in popular applications such as modeling the spread of disease, but

the extent of network applications spreads far beyond popular science. Our first

question asks how to computationally model a network without actually needing

to render a picture of the network.

First, some terminology: graph is the technical term for a network; a graph is made up of hubs

called nodes (or vertices), pairs of which are connected via segments/curves called edges. If an

edge connects nodes and , then it is denoted by (or equivalently).

an edge is incident to nodes and ; we say that and are adjacent to each other;

the degree of is the number of edges incident to it;

a walk is an ordered collection of edges for which the ending node of one edge is the starting

node of the next (e.g., , , , etc.);

a path is a walk in which every node appears in at most two edges;

path length is the number of edges in the path;

a cycle is a path whose final node is equal to its first node (so that every node is incident to

exactly two edges in the cycle); and

n ≤ 100 m ≤ 20

n m

v w v, w w, v

v, w v w v w
v

{ , }v1 v2 { , }v2 v3 { , }v3 v4

http://rosalind.info/media/problems/fibd/rabbit_tennis.png
http://rosalind.info/media/problems/fibd/mortal_rabbit_tree.png
http://rosalind.info/glossary/dynamic-programming/
http://rosalind.info/media/problems/fibd/mortal_rabbit_tree.png
http://rosalind.info/glossary/graph/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/incident/
http://rosalind.info/glossary/adjacent-nodes/
http://rosalind.info/glossary/degree/
http://rosalind.info/glossary/walk/
http://rosalind.info/glossary/path/
http://rosalind.info/glossary/path-length/
http://rosalind.info/glossary/cycle/

the distance between two vertices is the length of the shortest path connecting them.

Graph theory is the abstract mathematical study of graphs and their properties.

Problem

A graph whose nodes have all been labeled can be represented by an adjacency list, in which each

row of the list contains the two node labels corresponding to a unique edge.

A directed graph (or digraph) is a graph containing directed edges, each of which has an

orientation. That is, a directed edge is represented by an arrow instead of a line segment; the starting

and ending nodes of an edge form its tail and head, respectively. The directed edge with tail and

head is represented by (but not by). A directed loop is a directed edge of the form

.

For a collection of strings and a positive integer , the overlap graph for the strings is a directed

graph in which each string is represented by a node, and string is connected to string with a

directed edge when there is a length suffix of that matches a length prefix of , as long as

; we demand to prevent directed loops in the overlap graph (although directed cycles may

be present).

Given: A collection of DNA strings in FASTA format having total length at most 10 kbp.

Return: The adjacency list corresponding to . You may return edges in any order.

Sample Dataset

>Rosalind_0498

AAATAAA

>Rosalind_2391

AAATTTT

>Rosalind_2323

TTTTCCC

>Rosalind_0442

AAATCCC

>Rosalind_5013

GGGTGGG

Sample Output

Rosalind_0498 Rosalind_2391

Rosalind_0498 Rosalind_0442

Rosalind_2391 Rosalind_2323

Note on Visualizing Graphs

If you are looking for a way to actually visualize graphs as you are working through the Rosalind

site, then you may like to consider Graphviz (link here), a cross-platform application for rendering

graphs.

v
w (v, w) (w, v)

(v, v)

k
Ok s t

k s k t
s ≠ t s ≠ t

O3

http://rosalind.info/glossary/distance/
http://rosalind.info/glossary/graph-theory/
http://rosalind.info/glossary/adjacency-list/
http://rosalind.info/glossary/directed-graph/
http://rosalind.info/glossary/directed-edge/
http://rosalind.info/glossary/tail/
http://rosalind.info/glossary/head/
http://rosalind.info/glossary/directed-loop/
http://rosalind.info/glossary/overlap-graph/
http://rosalind.info/glossary/suffix/
http://rosalind.info/glossary/prefix/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/graphviz/
http://www.graphviz.org/

Problem 19

Calculating Expected Offspring

The Need for Averages

Averages arise everywhere. In sports, we want to project the average number of

games that a team is expected to win; in gambling, we want to project the

average losses incurred playing blackjack; in business, companies want to

calculate their average expected sales for the next quarter.

Molecular biology is not immune from the need for averages. Researchers need to predict the

expected number of antibiotic-resistant pathogenic bacteria in a future outbreak, estimate the

predicted number of locations in the genome that will match a given motif, and study the

distribution of alleles throughout an evolving population. In this problem, we will begin discussing

the third issue; first, we need to have a better understanding of what it means to average a random

process.

Problem

For a random variable taking integer values between 1 and , the expected value of is

. The expected value offers us a way of taking the long-term average

of a random variable over a large number of trials.

As a motivating example, let be the number on a six-sided die. Over a large number of rolls, we

should expect to obtain an average of 3.5 on the die (even though it's not possible to roll a 3.5). The

formula for expected value confirms that .

More generally, a random variable for which every one of a number of equally spaced outcomes has the

same probability is called a uniform random variable (in the die example, this "equal spacing" is

equal to 1). We can generalize our die example to find that if is a uniform random variable with

minimum possible value and maximum possible value , then . You may also wish to

verify that for the dice example, if is the random variable associated with the outcome of a second

die roll, then .

Given: Six positive integers, each of which does not exceed 20,000. The integers correspond to the

number of couples in a population possessing each genotype pairing for a given factor. In order, the six

given integers represent the number of couples having the following genotypes:

1. AA-AA

2. AA-Aa

3. AA-aa

4. Aa-Aa

5. Aa-aa

6. aa-aa

Return: The expected number of offspring displaying the dominant phenotype in the next

generation, under the assumption that every couple has exactly two offspring.

Sample Dataset

X n X
E(X) = k × Pr(X = k)∑n

k=1

X

E(X) = k × Pr(X = k) = 3.5∑6
k=1

X

a b E(X) = a+b
2

Y
E(X + Y) = 7

http://rosalind.info/glossary/allele/
http://rosalind.info/glossary/random-variable/
http://rosalind.info/glossary/expected-value/
http://rosalind.info/glossary/uniform-random-variable/
http://rosalind.info/glossary/genotype/
http://rosalind.info/glossary/factor/

1 0 0 1 0 1

Sample Output

3.5

Problem 20

Finding a Shared Motif

Searching Through the Haystack

In “Finding a Motif in DNA”, we searched a given genetic string for a motif;

however, this problem assumed that we know the motif in advance. In practice,

biologists often do not know exactly what they are looking for. Rather, they must

hunt through several different genomes at the same time to identify regions of

similarity that may indicate genes shared by different organisms or species.

The simplest such region of similarity is a motif occurring without mutation in every one of a

collection of genetic strings taken from a database; such a motif corresponds to a substring shared

by all the strings. We want to search for long shared substrings, as a longer motif will likely

indicate a greater shared function.

Problem

A common substring of a collection of strings is a substring of every member of the collection. We

say that a common substring is a longest common substring if there does not exist a longer

common substring. For example, "CG" is a common substring of "ACGTACGT" and "AACCGGTATA",

but it is not as long as possible; in this case, "GTA" is a longest common substring of "ACGTACGT"

and "AACCGTATA".

Note that the longest common substring is not necessarily unique; for a simple example, "AA" and

"CC" are both longest common substrings of "AACC" and "CCAA".

Given: A collection of () DNA strings of length at most 1 kbp each in FASTA format.

Return: A longest common substring of the collection. (If multiple solutions exist, you may return

any single solution.)

Sample Dataset

>Rosalind_1

GATTACA

>Rosalind_2

TAGACCA

>Rosalind_3

k k ≤ 100

http://rosalind.info/problems/subs/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/mutation/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/common-substring/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/longest-common-substring/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/fasta-format/

Figure 1. Mendel's second law
dictates that every one of the 16
possible assignments of parental
alleles is equally likely. The Punnett
square for two factors therefore
places each of these assignments
in a cell of a 4 X 4 table. The
probability of an offspring's genome
is equal to the number of times it
appears in the table, divided by 16.

ATACA

Sample Output

AC

Problem 21

Independent Alleles

Mendel's Second Law

Recall that Mendel's first law states that

for any factor, an individual randomly

assigns one of its two alleles to its

offspring. Yet this law does not state

anything regarding the relationship with which alleles for

different factors will be inherited.

After recording the results of crossing thousands of pea

plants for seven years, Mendel surmised that alleles for

different factors are inherited with no dependence on each

other. This statement has become his second law, also

known as the law of independent assortment.

What does it mean for factors to be "assorted

independently?" If we cross two organisms, then a

shortened form of independent assortment states that if we

look only at organisms having the same alleles for one

factor, then the inheritance of another factor should not

change.

For example, Mendel's first law states that if we cross two

 organisms, then 1/4 of their offspring will be , 1/4

will be , and 1/2 will be . Now, say that we cross plants that are both heterozygous for two

factors, so that both of their genotypes may be written as . Next, examine only

offspring: Mendel's second law states that the same proportions of , , and individuals will

be observed in these offspring. The same fact holds for and offspring.

As a result, independence will allow us to say that the probability of an offspring is simply

equal to the probability of an offspring times the probability of a organism, i.e., 1/16.

Because of independence, we can also extend the idea of Punnett squares to multiple factors, as

shown in Figure 1. We now wish to quantify Mendel's notion of independence using probability.

Problem

Two events and are independent if is equal to . In other words,

Aa aa
AA Aa

Aa Bb Bb
AA Aa aa

BB bb

aa BB
aa BB

A B Pr(A and B) Pr(A) × Pr(B)

http://rosalind.info/media/problems/lia/dihybrid_cross.png
http://rosalind.info/glossary/mendels-first-law/
http://rosalind.info/glossary/factor/
http://rosalind.info/glossary/allele/
http://rosalind.info/glossary/mendels-second-law/
http://rosalind.info/glossary/heterozygous/
http://rosalind.info/glossary/punnett-square/
http://rosalind.info/media/problems/lia/dihybrid_cross.png
http://rosalind.info/glossary/probability/
http://rosalind.info/glossary/probabilistic-event/
http://rosalind.info/glossary/independent-events/

Figure 2. The probability of each
outcome for the sum of the values
on two rolled dice (black and white),
broken down depending on the
number of pips showing on each
die. You can verify that 18 of the 36
equally probable possibilities result
in an odd sum.

Figure 3. The probability of any
outcome (leaf) in a probability tree
diagram is given by the product of
probabilities from the start of the tree

the events do not influence each other, so that we may simply

calculate each of the individual probabilities separately and

then multiply.

More generally, random variables and are independent

if whenever and are respective events for and ,

and are independent (i.e.,

).

As an example of how helpful independence can be for

calculating probabilities, let and represent the numbers

showing on two six-sided dice. Intuitively, the number of pips

showing on one die should not affect the number showing on

the other die. If we want to find the probability that is

odd, then we don't need to draw a tree diagram and consider

all possibilities. We simply first note that for to be

odd, either is even and is odd or is odd and is

even. In terms of probability,

. Using

independence, this becomes

, or .

You can verify this result in Figure 2, which shows all 36 outcomes for rolling two dice.

Given: Two positive integers () and (). In this problem, we begin with Tom, who

in the 0th generation has genotype Aa Bb. Tom has two children in the 1st generation, each of whom

has two children, and so on. Each organism always mates with an organism having genotype Aa Bb.

Return: The probability that at least Aa Bb organisms will belong to the -th generation of Tom's

family tree (don't count the Aa Bb mates at each level). Assume that Mendel's second law holds for

the factors.

Sample Dataset

2 1

Sample Output

0.684

An Example of Dependent Random Variables

Two random variables are dependent if they are not

independent. For an example of dependent random

variables, recall our example in “Mendel's First Law” of

drawing two balls from a bag containing 3 red balls and 2

blue balls. If represents the color of the first ball drawn

and is the color of the second ball drawn (without

replacement), then let be the event " is red" and be

the event is blue. In this case, the probability tree

diagram illustrated in Figure 3 demonstrates that

. Yet we can also see that

X Y
A B X Y A

B
Pr(A and B) = Pr(A) × Pr(B)

X Y

X + Y

X + Y
X Y X Y

Pr(X + Y is odd) = Pr(X is even and Y is odd) + Pr(X is odd and Y is even)

[Pr(X is even) × Pr(Y is odd)] + [Pr(X is odd) × Pr(Y is even)] + =()1
2

2 ()1
2

2 1
2

k k ≤ 7 N N ≤ 2k

N k

X
Y

A X B
Y

Pr(A and B) = 3
10

Pr(A) = 3 Pr(B) = + =3 1 2

http://rosalind.info/media/problems/lia/two_dice.png
http://rosalind.info/media/problems/lia/balls_tree.png
http://rosalind.info/glossary/random-variable/
http://rosalind.info/glossary/independent-random-variables/
http://rosalind.info/media/problems/lia/two_dice.png
http://rosalind.info/glossary/dependent-random-variables/
http://rosalind.info/problems/iprb/
http://rosalind.info/media/problems/lia/balls_tree.png

to the outcome. For example, the
probability that X is blue and Y is red
is equal to (2/5)(1/4), or 1/10.

Figure 1. The human cyclophilin
family, as represented by the
structures of the isomerase
domains of some of its members.

 and . We can now

see that .

Problem 22

Finding a Protein Motif

Motif Implies Function

As mentioned in “Translating RNA into

Protein”, proteins perform every practical

function in the cell. A structural and

functional unit of the protein is a domain:

in terms of the protein's primary structure, the domain is an

interval of amino acids that can evolve and function

independently.

Each domain usually corresponds to a single function of

the protein (e.g., binding the protein to DNA, creating or

breaking specific chemical bonds, etc.). Some proteins,

such as myoglobin and the Cytochrome complex, have

only one domain, but many proteins are multifunctional and

therefore possess several domains. It is even possible to

artificially fuse different domains into a protein molecule

with definite properties, creating a chimeric protein.

Just like species, proteins can evolve, forming homologous groups called protein families.

Proteins from one family usually have the same set of domains, performing similar functions; see

Figure 1.

A component of a domain essential for its function is called a motif, a term that in general has the

same meaning as it does in nucleic acids, although many other terms are also used (blocks,

signatures, fingerprints, etc.) Usually protein motifs are evolutionarily conservative, meaning that

they appear without much change in different species.

Proteins are identified in different labs around the world and gathered into freely accessible

databases. A central repository for protein data is UniProt, which provides detailed protein

annotation, including function description, domain structure, and post-translational modifications.

UniProt also supports protein similarity search, taxonomy analysis, and literature citations.

Problem

To allow for the presence of its varying forms, a protein motif is represented by a shorthand as follows:

[XY] means "either X or Y" and {X} means "any amino acid except X." For example, the N-

glycosylation motif is written as N{P}[ST]{P}.

You can see the complete description and features of a particular protein by its access ID "uniprot_id"

in the UniProt database, by inserting the ID number into

Pr(A) = 3
5 Pr(B) = + =3

10
1
10

2
5

Pr(A and B) ≠ Pr(A) × Pr(B)

http://rosalind.info/media/problems/mprt/cyclophilines.png
http://rosalind.info/problems/prot/
http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/cell/
http://rosalind.info/glossary/domain/
http://rosalind.info/glossary/protein-primary-structure/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/chimeric-protein/
http://rosalind.info/glossary/homologous/
http://rosalind.info/glossary/protein-family/
http://rosalind.info/media/problems/mprt/cyclophilines.png
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/nucleic-acid/
http://www.uniprot.org/

http://www.uniprot.org/uniprot/uniprot_id

Alternatively, you can obtain a protein sequence in FASTA format by following

http://www.uniprot.org/uniprot/uniprot_id.fasta

For example, the data for protein B5ZC00 can be found at http://www.uniprot.org/uniprot/B5ZC00.

Given: At most 15 UniProt Protein Database access IDs.

Return: For each protein possessing the N-glycosylation motif, output its given access ID followed

by a list of locations in the protein string where the motif can be found.

Sample Dataset

A2Z669

B5ZC00

P07204_TRBM_HUMAN

P20840_SAG1_YEAST

Sample Output

B5ZC00

85 118 142 306 395

P07204_TRBM_HUMAN

47 115 116 382 409

P20840_SAG1_YEAST

79 109 135 248 306 348 364 402 485 501 614

Note

Some entries in UniProt have one primary (citable) accession number and some secondary

numbers, appearing due to merging or demerging entries. In this problem, you may be given any

type of ID. If you type the secondary ID into the UniProt query, then you will be automatically

redirected to the page containing the primary ID. You can find more information about UniProt IDs

here.

Problem 23

Inferring mRNA from Protein

Pitfalls of Reversing Translation

When researchers discover a new protein, they would like to infer the strand of mRNA from which

this protein could have been translated, thus allowing them to locate genes associated with this

http://rosalind.info/glossary/fasta-format/
http://www.uniprot.org/uniprot/B5ZC00
http://rosalind.info/glossary/location/
http://www.uniprot.org/manual/accession_numbers
http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/messenger-rna/
http://rosalind.info/glossary/translation/
http://rosalind.info/glossary/gene/

protein on the genome.

Unfortunately, although any RNA string can be translated into a unique protein

string, reversing the process yields a huge number of possible RNA strings from a

single protein string because most amino acids correspond to multiple RNA

codons (see the RNA Codon Table).

Because of memory considerations, most data formats that are built into

languages have upper bounds on how large an integer can be: in some versions of Python, an "int"

variable may be required to be no larger than , or 2,147,483,647. As a result, to deal with

very large numbers in Rosalind, we need to devise a system that allows us to manipulate large

numbers without actually having to store large numbers.

Problem

For positive integers and , modulo (written in shorthand) is the remainder when

 is divided by . For example, because .

Modular arithmetic is the study of addition, subtraction, multiplication, and division with respect to

the modulo operation. We say that and are congruent modulo if ;

in this case, we use the notation .

Two useful facts in modular arithmetic are that if and , then

 and . To check your understanding of these

rules, you may wish to verify these relationships for , , , , and .

As you will see in this exercise, some Rosalind problems will ask for a (very large) integer solution

modulo a smaller number to avoid the computational pitfalls that arise with storing such large numbers.

Given: A protein string of length at most 1000 aa.

Return: The total number of different RNA strings from which the protein could have been

translated, modulo 1,000,000. (Don't neglect the importance of the stop codon in protein translation.)

Sample Dataset

MA

Sample Output

12

Hint

What does it mean intuitively to take a number modulo 1,000,000?

Problem 24

Open Reading Frames

− 1231

a n a n a mod n
a n 29 mod 11 = 7 29 = 11 × 2 + 7

a b n a mod n = b mod n
a ≡ b mod n

a ≡ b mod n c ≡ d mod n
a + c ≡ b + d mod n a × c ≡ b × d mod n

a = 29 b = 73 c = 10 d = 32 n = 11

http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/codon/
http://rosalind.info/glossary/rna-codon-table/
http://rosalind.info/glossary/modular-arithmetic/
http://rosalind.info/glossary/modular-arithmetic/
http://rosalind.info/glossary/modular-arithmetic/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/stop-codon/

Figure 1. Schematic image of the
particular ORF with start and stop
codons shown.

Transcription May Begin Anywhere

In “Transcribing DNA into RNA”, we

discussed the transcription of DNA into

RNA, and in “Translating RNA into

Protein”, we examined the translation of

RNA into a chain of amino acids for the construction of

proteins. We can view these two processes as a single

step in which we directly translate a DNA string into a

protein string, thus calling for a DNA codon table.

However, three immediate wrinkles of complexity arise

when we try to pass directly from DNA to proteins. First,

not all DNA will be transcribed into RNA: so-called junk

DNA appears to have no practical purpose for cellular

function. Second, we can begin translation at any position along a strand of RNA, meaning that any

substring of a DNA string can serve as a template for translation, as long as it begins with a start

codon, ends with a stop codon, and has no other stop codons in the middle. See Figure 1. As a

result, the same RNA string can actually be translated in three different ways, depending on how

we group triplets of symbols into codons. For example, ...AUGCUGAC... can be translated as

...AUGCUG..., ...UGCUGA..., and ...GCUGAC..., which will typically produce wildly different

protein strings.

Problem

Either strand of a DNA double helix can serve as the coding strand for RNA transcription. Hence, a

given DNA string implies six total reading frames, or ways in which the same region of DNA can be

translated into amino acids: three reading frames result from reading the string itself, whereas three

more result from reading its reverse complement.

An open reading frame (ORF) is one which starts from the start codon and ends by stop codon,

without any other stop codons in between. Thus, a candidate protein string is derived by translating an

open reading frame into amino acids until a stop codon is reached.

Given: A DNA string of length at most 1 kbp in FASTA format.

Return: Every distinct candidate protein string that can be translated from ORFs of . Strings can

be returned in any order.

Sample Dataset

>Rosalind_99

AGCCATGTAGCTAACTCAGGTTACATGGGGATGACCCCGCGACTTGGATTAGAGTCTCTTTTGGAATAAGC

CTGAATGATCCGAGTAGCATCTCAG

Sample Output

MLLGSFRLIPKETLIQVAGSSPCNLS

M

MGMTPRLGLESLLE

s

s

http://rosalind.info/media/problems/orf/orf.gif
http://rosalind.info/problems/rna/
http://rosalind.info/glossary/rna-transcription/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/rna/
http://rosalind.info/problems/prot/
http://rosalind.info/glossary/translation/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/dna-codon-table/
http://rosalind.info/glossary/junk-dna/
http://rosalind.info/glossary/cell/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/start-codon/
http://rosalind.info/glossary/stop-codon/
http://rosalind.info/glossary/stop-codon/
http://rosalind.info/media/problems/orf/orf.gif
http://rosalind.info/glossary/codon/
http://rosalind.info/glossary/coding-strand/
http://rosalind.info/glossary/reading-frame/
http://rosalind.info/glossary/reverse-complement/
http://rosalind.info/glossary/open-reading-frame/
http://rosalind.info/glossary/start-codon/
http://rosalind.info/glossary/stop-codon/
http://rosalind.info/glossary/stop-codon/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/fasta-format/

Figure 1. Similar regions in mouse
and human chromosomes. Image
credit: U.S. Department of Energy
Human Genome Program

MTPRLGLESLLE

Problem 25

Enumerating Gene Orders

Rearrangements Power Large-Scale Genomic Changes

Point mutations can create changes in

populations of organisms from the same

species, but they lack the power to

create and differentiate entire species.

This more arduous work is left to larger mutations called

genome rearrangements, which move around huge

blocks of DNA. Rearrangements cause major genomic

change, and most rearrangements are fatal or seriously

damaging to the mutated cell and its descendants (many

cancers derive from rearrangements). For this reason,

rearrangements that come to influence the genome of an

entire species are very rare.

Because rearrangements that affect species evolution occur infrequently, two closely related

species will have very similar genomes. Thus, to simplify comparison of two such genomes,

researchers first identify similar intervals of DNA from the species, called synteny blocks; over

time, rearrangements have created these synteny blocks and heaved them around across the two

genomes (often separating blocks onto different chromosomes, see Figure 1.).

A pair of synteny blocks from two different species are not strictly identical (they are separated by

the action of point mutations or very small rearrangements), but for the sake of studying large-scale

rearrangements, we consider them to be equivalent. As a result, we can label each synteny block

with a positive integer; when comparing two species' genomes/chromosomes, we then only need to

specify the order of its numbered synteny blocks.

Problem

A permutation of length is an ordering of the positive integers . For example,

 is a permutation of length .

Given: A positive integer .

Return: The total number of permutations of length , followed by a list of all such permutations (in

any order).

Sample Dataset

3

n {1, 2, … , n}
π = (5, 3, 2, 1, 4) 5

n ≤ 7

n

http://rosalind.info/media/problems/perm/synteny.jpg
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/genome-rearrangement/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/cell/
http://rosalind.info/glossary/synteny-block/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/media/problems/perm/synteny.jpg
http://rosalind.info/glossary/permutation/

Figure 1. Formation of a peptide
bond

Figure 2. Outermost acids

Sample Output

6

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

Problem 26

Calculating Protein Mass

Chaining the Amino Acids

In “Translating RNA into Protein”, we

examined the translation of RNA into an

amino acid chain for the construction of a

protein. When two amino acids link

together, they form a peptide bond, which releases a

molecule of water; see Figure 1. Thus, after a series of

amino acids have been linked together into a polypeptide,

every pair of adjacent amino acids has lost one molecule of

water, meaning that a polypeptide containing amino

acids has had water molecules removed.

More generally, a residue is a molecule from which a

water molecule has been removed; every amino acid in a

protein are residues except the leftmost and the rightmost

ones. These outermost amino acids are special in that one

has an "unstarted" peptide bond, and the other has an

"unfinished" peptide bond. Between them, the two

molecules have a single "extra" molecule of water (see the

atoms marked in blue in Figure 2). Thus, the mass of a

protein is the sum of masses of all its residues plus the

mass of a single water molecule.

There are two standard ways of computing the mass of a

residue by summing the masses of its individual atoms. Its

monoisotopic mass is computed by using the principal

(most abundant) isotope of each atom in the amino acid, whereas its average mass is taken by

taking the average mass of each atom in the molecule (over all naturally appearing isotopes).

Many applications in proteomics rely on mass spectrometry, an analytical chemical technique

used to determine the mass, elemental composition, and structure of molecules. In mass

spectrometry, monoisotopic mass is used more often than average mass, and so all amino acid

masses are assumed to be monoisotopic unless otherwise stated.

n
n − 1

http://rosalind.info/media/problems/prtm/peptide_bond.png
http://rosalind.info/media/problems/prtm/peptide_bond2.png
http://rosalind.info/problems/prot/
http://rosalind.info/glossary/translation/
http://rosalind.info/glossary/rna/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/peptide-bond/
http://rosalind.info/media/problems/prtm/peptide_bond.png
http://rosalind.info/glossary/polypeptide/
http://rosalind.info/glossary/residue/
http://rosalind.info/media/problems/prtm/peptide_bond2.png
http://rosalind.info/glossary/monoisotopic-mass/
http://rosalind.info/glossary/isotope/
http://rosalind.info/glossary/average-mass/
http://rosalind.info/glossary/proteomics/
http://rosalind.info/glossary/mass-spectrometry/

The standard unit used in mass spectrometry for measuring mass is the atomic mass unit, which

is also called the dalton (Da) and is defined as one twelfth of the mass of a neutral atom of carbon-

12. The mass of a protein is the sum of the monoisotopic masses of its amino acid residues plus

the mass of a single water molecule (whose monoisotopic mass is 18.01056 Da).

In the following several problems on applications of mass spectrometry, we avoid the complication

of having to distinguish between residues and non-residues by only considering peptides excised

from the middle of the protein. This is a relatively safe assumption because in practice, peptide

analysis is often performed in tandem mass spectrometry. In this special class of mass

spectrometry, a protein is first divided into peptides, which are then broken into ions for mass

analysis.

Problem

In a weighted alphabet, every symbol is assigned a positive real number called a weight. A string

formed from a weighted alphabet is called a weighted string, and its weight is equal to the sum of

the weights of its symbols.

The standard weight assigned to each member of the 20-symbol amino acid alphabet is the

monoisotopic mass of the corresponding amino acid.

Given: A protein string of length at most 1000 aa.

Return: The total weight of . Consult the monoisotopic mass table.

Sample Dataset

SKADYEK

Sample Output

821.392

Problem 27

Locating Restriction Sites

The Billion-Year War

The war between viruses and bacteria has been waged for over a billion years.

Viruses called bacteriophages (or simply phages) require a bacterial host to

propagate, and so they must somehow infiltrate the bacterium; such deception

can only be achieved if the phage understands the genetic framework underlying

the bacterium's cellular functions. The phage's goal is to insert DNA that will be replicated within

the bacterium and lead to the reproduction of as many copies of the phage as possible, which

sometimes also involves the bacterium's demise.

P

P

http://rosalind.info/glossary/dalton/
http://rosalind.info/glossary/dalton/
http://rosalind.info/glossary/dalton/
http://rosalind.info/glossary/peptide/
http://rosalind.info/glossary/tandem-mass-spectrometry/
http://rosalind.info/glossary/weighted-alphabet/
http://rosalind.info/glossary/symbol-weight/
http://rosalind.info/glossary/weighted-string/
http://rosalind.info/glossary/string-weight/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/monoisotopic-mass-table/
http://rosalind.info/glossary/bacteriophage/
http://rosalind.info/glossary/dna/

Figure 1. DNA cleaved by EcoRV
restriction enzyme

Figure 2. Palindromic recognition
site

To defend itself, the bacterium must either obfuscate its

cellular functions so that the phage cannot infiltrate it, or

better yet, go on the counterattack by calling in the air

force. Specifically, the bacterium employs aerial scouts

called restriction enzymes, which operate by cutting

through viral DNA to cripple the phage. But what kind of

DNA are restriction enzymes looking for?

The restriction enzyme is a homodimer, which means

that it is composed of two identical substructures. Each of

these structures separates from the restriction enzyme in

order to bind to and cut one strand of the phage DNA

molecule; both substructures are pre-programmed with the

same target string containing 4 to 12 nucleotides to search

for within the phage DNA (see Figure 1.). The chance that both strands of phage DNA will be cut

(thus crippling the phage) is greater if the target is located on both strands of phage DNA, as close

to each other as possible. By extension, the best chance of disarming the phage occurs when the

two target copies appear directly across from each other along the phage DNA, a phenomenon that

occurs precisely when the target is equal to its own reverse complement. Eons of evolution have

made sure that most restriction enzyme targets now have this form.

Problem

A DNA string is a reverse palindrome if it is equal to its

reverse complement. For instance, GCATGC is a reverse

palindrome because its reverse complement is GCATGC. See

Figure 2.

Given: A DNA string of length at most 1 kbp in FASTA

format.

Return: The position and length of every reverse palindrome in the string having length between 4

and 12. You may return these pairs in any order.

Sample Dataset

>Rosalind_24

TCAATGCATGCGGGTCTATATGCAT

Sample Output

4 6

5 4

6 6

7 4

17 4

18 4

20 6

21 4

http://rosalind.info/media/problems/revp/EcoRV.png
http://rosalind.info/media/problems/revp/palindrome.png
http://rosalind.info/glossary/restriction-enzyme/
http://rosalind.info/glossary/homodimer/
http://rosalind.info/glossary/string/
http://rosalind.info/media/problems/revp/EcoRV.png
http://rosalind.info/glossary/reverse-complement/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/reverse-palindrome/
http://rosalind.info/media/problems/revp/palindrome.png
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/position/
http://rosalind.info/glossary/string-length/

Figure 1. The elongation of a pre-
mRNA by RNAP as it moves down
the template strand of DNA.

Figure 2. RNA is identical to the
coding strand except for the
replacement of thymine with uracil.

Extra Information

You may be curious how the bacterium prevents its own DNA from being cut by restriction

enzymes. The short answer is that it locks itself from being cut through a chemical process called

DNA methylation.

Problem 28

RNA Splicing

Genes are Discontiguous

In “Transcribing DNA into RNA”, we

mentioned that a strand of DNA is copied

into a strand of RNA during transcription,

but we neglected to mention how

transcription is achieved.

In the nucleus, an enzyme (i.e., a molecule that

accelerates a chemical reaction) called RNA polymerase

(RNAP) initiates transcription by breaking the bonds joining

complementary bases of DNA. It then creates a molecule

called precursor mRNA, or pre-mRNA, by using one of

the two strands of DNA as a template strand: moving

down the template strand, when RNAP encounters the

next nucleotide, it adds the complementary base to the

growing RNA strand, with the provision that uracil must be used in place of thymine; see Figure 1.

Because RNA is constructed based on complementarity, the second strand of DNA, called the

coding strand, is identical to the new strand of RNA except for the replacement of thymine with

uracil. See Figure 2 and recall “Transcribing DNA into RNA”.

After RNAP has created several nucleotides of RNA, the first separated complementary DNA bases

then bond back together. The overall effect is very similar to a pair of zippers traversing the DNA

double helix, unzipping the two strands and then quickly zipping them back together while the

strand of pre-mRNA is produced.

For that matter, it is not the case that an entire substring of DNA is transcribed into RNA and then

translated into a peptide one codon at a time. In reality, a pre-mRNA is first chopped into smaller

segments called introns and exons; for the purposes of protein translation, the introns are thrown

out, and the exons are glued together sequentially to produce a final strand of mRNA. This cutting

and pasting process is called splicing, and it is facilitated by a collection of RNA and proteins

called a spliceosome. The fact that the spliceosome is made of RNA and proteins despite

regulating the splicing of RNA to create proteins is just one manifestation of a molecular chicken-

and-egg scenario that has yet to be fully resolved.

In terms of DNA, the exons deriving from a gene are collectively known as the gene's coding

region.

http://rosalind.info/media/problems/splc/transcription.png
http://rosalind.info/media/problems/splc/coding_template_strands.png
http://rosalind.info/glossary/dna-methylation/
http://rosalind.info/problems/rna/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/rna/
http://rosalind.info/glossary/rna-transcription/
http://rosalind.info/glossary/rna-polymerase/
http://rosalind.info/glossary/complementary-base/
http://rosalind.info/glossary/precursor-mrna/
http://rosalind.info/glossary/template-strand/
http://rosalind.info/glossary/uracil/
http://rosalind.info/glossary/thymine/
http://rosalind.info/media/problems/splc/transcription.png
http://rosalind.info/glossary/coding-strand/
http://rosalind.info/media/problems/splc/coding_template_strands.png
http://rosalind.info/problems/rna/
http://rosalind.info/glossary/double-helix/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/translation/
http://rosalind.info/glossary/peptide/
http://rosalind.info/glossary/codon/
http://rosalind.info/glossary/intron/
http://rosalind.info/glossary/exon/
http://rosalind.info/glossary/messenger-rna/
http://rosalind.info/glossary/rna-splicing/
http://rosalind.info/glossary/spliceosome/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/gene-coding-region/

Problem

After identifying the exons and introns of an RNA string, we only need to delete the introns and

concatenate the exons to form a new string ready for translation.

Given: A DNA string (of length at most 1 kbp) and a collection of substrings of acting as

introns. All strings are given in FASTA format.

Return: A protein string resulting from transcribing and translating the exons of . (Note: Only one

solution will exist for the dataset provided.)

Sample Dataset

>Rosalind_10

ATGGTCTACATAGCTGACAAACAGCACGTAGCAATCGGTCGAATCTCGAGAGGCATATGGTCACATGATCG

GTCGAGCGTGTTTCAAAGTTTGCGCCTAG

>Rosalind_12

ATCGGTCGAA

>Rosalind_15

ATCGGTCGAGCGTGT

Sample Output

MVYIADKQHVASREAYGHMFKVCA

Problem 29

Enumerating k-mers Lexicographically

Organizing Strings

When cataloguing a collection of genetic strings, we should have an established

system by which to organize them. The standard method is to organize strings as

they would appear in a dictionary, so that "APPLE" precedes "APRON", which in

turn comes before "ARMOR".

Problem

Assume that an alphabet has a predetermined order; that is, we write the alphabet as a

permutation , where . For instance, the English

alphabet is organized as .

Given two strings and having the same length , we say that precedes in the lexicographic

order (and write) if the first symbol that doesn't match satisfies in .

Given: A collection of at most 10 symbols defining an ordered alphabet, and a positive integer (

s s

s

A
A = (, , … ,)a1 a2 ak < < ⋯ <a1 a2 ak

(A, B, … , Z)

s t n s t
s t<Lex s[j] t[j] <sj tj A

n

http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/alphabet/
http://rosalind.info/glossary/permutation/
http://rosalind.info/glossary/lexicographic-order/

).

Return: All strings of length that can be formed from the alphabet, ordered lexicographically.

Sample Dataset

T A G C

2

Sample Output

TT

TA

TG

TC

AT

AA

AG

AC

GT

GA

GG

GC

CT

CA

CG

CC

Note

As illustrated in the sample, the alphabet order in this problem is defined by the order in which

symbols are provided in the dataset, which is not necessarily the traditional order of the English

alphabet.

Problem 30

Longest Increasing Subsequence

A Simple Measure of Gene Order Similarity

In “Enumerating Gene Orders”, we started talking about comparing the order of

genes on a chromosome taken from two different species and moved around by

rearrangements throughout the course of evolution.

One very simple way of comparing genes from two chromosomes is to search for the largest

n ≤ 10

n

http://rosalind.info/problems/perm/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/genome-rearrangement/

collection of genes that are found in the same order in both chromosomes. To do so, we will need

to apply our idea of permutations. Say that two chromosomes share genes; if we label the genes

of one chromosome by the numbers 1 through n in the order that they appear, then the second

chromosome will be given by a permutation of these numbered genes. To find the largest number of

genes appearing in the same order, we need only to find the largest collection of increasing

elements in the permutation.

Problem

A subsequence of a permutation is a collection of elements of the permutation in the order that they

appear. For example, (5, 3, 4) is a subsequence of (5, 1, 3, 4, 2).

A subsequence is increasing if the elements of the subsequence increase, and decreasing if the

elements decrease. For example, given the permutation (8, 2, 1, 6, 5, 7, 4, 3, 9), an increasing

subsequence is (2, 6, 7, 9), and a decreasing subsequence is (8, 6, 5, 4, 3). You may verify that these

two subsequences are as long as possible.

Given: A positive integer followed by a permutation of length .

Return: A longest increasing subsequence of , followed by a longest decreasing subsequence of

.

Sample Dataset

5

5 1 4 2 3

Sample Output

1 2 3

5 4 2

Citation

Adapted from Jones & Pevzner, *An Introduction to Bioinformatics Algorithms, Problem 6.48.

Problem 31

Genome Assembly as Shortest Superstring

Introduction to Genome Sequencing

Recall from “Computing GC Content” that almost all humans share approximately

99.9% of the same nucleotides on the genome. Thus, if we know only a few

complete genomes from the species, then we already possess an important key

n

n ≤ 10000 π n

π
π

http://rosalind.info/glossary/permutation/
http://rosalind.info/glossary/permutation-subsequence/
http://rosalind.info/glossary/permutation/
http://rosalind.info/glossary/increasing-permutation-subsequence/
http://rosalind.info/glossary/decreasing-permutation-subsequence/
http://rosalind.info/problems/gc/

Figure 1. Fragment Assembly works
by blasting many copies of the same
genome into smaller, identifiable
reads, which are then used to
computationally assemble one copy
of the genome.

to unlocking the species genome.

Determining an organism's complete genome (called

genome sequencing) forms a central task of

bioinformatics. Unfortunately, we still don't possess the

microscope technology to zoom into the nucleotide level

and determine the sequence of a genome's nucleotides,

one at a time. However, researchers can apply chemical

methods to generate and identify much smaller snippets of

DNA, called reads.

After obtaining a large collection of reads from multiple

copies of the same genome, the aim is to reconstruct the

desired genome from these small pieces of DNA; this

process is called fragment assembly (see Figure 1).

Problem

For a collection of strings, a larger string containing every one of the smaller strings as a substring is

called a superstring.

By the assumption of parsimony, a shortest possible superstring over a collection of reads serves as a

candidate chromosome.

Given: At most 50 DNA strings whose length does not exceed 1 kbp in FASTA format (which

represent reads deriving from the same strand of a single linear chromosome).

The dataset is guaranteed to satisfy the following condition: there exists a unique way to reconstruct

the entire chromosome from these reads by gluing together pairs of reads that overlap by more than

half their length.

Return: A shortest superstring containing all the given strings (thus corresponding to a

reconstructed chromosome).

Sample Dataset

>Rosalind_56

ATTAGACCTG

>Rosalind_57

CCTGCCGGAA

>Rosalind_58

AGACCTGCCG

>Rosalind_59

GCCGGAATAC

Sample Output

ATTAGACCTGCCGGAATAC

Extra Information

Although the goal of fragment assembly is to produce an entire genome, in practice it is only

http://rosalind.info/media/problems/long/fragment-assembly.png
http://rosalind.info/glossary/genome-sequencing/
http://rosalind.info/glossary/read/
http://rosalind.info/glossary/genome-assembly/
http://rosalind.info/media/problems/long/fragment-assembly.png
http://rosalind.info/glossary/superstring/
http://rosalind.info/glossary/parsimony/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/strand/

Figure 1. A hairpin loop is formed
when consecutive elements from
two different regions of an RNA
molecule base pair.

Figure 2. Three matchings
(highlighted in red) shown in three
different graphs.

possible to construct several contiguous portions of each chromosome, called contigs.

Furthermore, the assumption made above that reads all derive from the same strand is also

practically unrealistic; in reality, researchers will not know the strand of DNA from which a given

read has been sequenced.

Problem 32

Perfect Matchings and RNA Secondary Structures

Introduction to RNA Folding

Because RNA is single-stranded, you

may have wondered if the cytosine and

guanine bases bond to each other like in

DNA. The answer is yes, as do adenine

and uracil, and the resulting base pairs define the

secondary structure of the RNA molecule; recall that its

primary structure is just the order of its bases.

In the greater three-dimensional world, the base pairing

interactions of an RNA molecule cause it to twist around

on itself in a process called RNA folding. When two

complementary intervals of bases located close to each

other on the strand bond to each other, they form a

structure called a hairpin loop (or stem loop), shown in Figure 1.

The same RNA molecule may base pair differently at different points in time, thus adopting many

different secondary structures. Our eventual goal is to classify which of these structures are

practically feasible, and which are not. To this end, we will ask natural combinatorial questions

about the number of possible different RNA secondary structures. In this problem, we will first

consider the (impractical) simplified case in which every nucleotide forms part of a base pair in the

RNA molecule.

Problem

A matching in a graph is a collection of edges of for

which no node belongs to more than one edge in the

collection. See Figure 2 for examples of matchings. If

contains an even number of nodes (say), then a matching

on is perfect if it contains edges, which is clearly the

maximum possible. An example of a graph containing a

perfect matching is shown in Figure 3.

First, let denote the complete graph on labeled nodes, in which every node is connected to

every other node with an edge, and let denote the total number of perfect matchings in . For a

given node , there are ways to join to the other nodes in the graph, after which point we

must form a perfect matching on the remaining nodes. This reasoning provides us with the

recurrence relation ; using the fact that is 1, this recurrence relation

implies the closed equation .

G G

G
2n

G n

Kn 2n
pn Kn

x 2n − 1 x
2n − 2

= (2n − 1) ⋅pn pn−1 p1
= (2n − 1)(2n − 3)(2n − 5) ⋯ (3)(1)pn

http://rosalind.info/media/problems/pmch/hairpin_loop.png
http://rosalind.info/media/problems/pmch/matching.png
http://rosalind.info/glossary/contig/
http://rosalind.info/glossary/rna/
http://rosalind.info/glossary/cytosine/
http://rosalind.info/glossary/guanine/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/adenine/
http://rosalind.info/glossary/uracil/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/nucleic-acid-secondary-structure/
http://rosalind.info/glossary/nucleic-acid-primary-structure/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/rna-folding/
http://rosalind.info/glossary/hairpin-loop/
http://rosalind.info/media/problems/pmch/hairpin_loop.png
http://rosalind.info/glossary/combinatorics/
http://rosalind.info/glossary/matching/
http://rosalind.info/glossary/graph/
http://rosalind.info/glossary/edge/
http://rosalind.info/media/problems/pmch/matching.png
http://rosalind.info/glossary/perfect-matching/
http://rosalind.info/media/problems/pmch/perfect_matching.png
http://rosalind.info/glossary/complete-graph/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/recurrence-relation/

Figure 3. This graph contains 10
nodes; the five edges forming a
perfect matching on these nodes
are highlighted in red.

Figure 4. The bonding graph for the
RNA string s = UAGCGUGAUCAC.

Figure 5. A perfect matching on the
basepair edges is highlighted in red
and represents a candidate
secondary structure for the RNA
strand.

Given an RNA string , a bonding graph for

is formed as follows. First, assign each symbol of to a node,

and arrange these nodes in order around a circle, connecting

them with edges called adjacency edges. Second, form all

possible edges {A, U} and {C, G}, called basepair edges; we

will represent basepair edges with dashed edges, as

illustrated by the bonding graph in Figure 4.

Note that a matching contained in the basepair edges will

represent one possibility for base pairing interactions in , as

shown in Figure 5. For such a matching to exist, must have

the same number of 'A's as 'U's and the same number of 'C's

as 'G's.

Given: An RNA string of length at most 80 bp having the

same number of occurrences of 'A' as 'U' and the same

number of occurrences of 'C' as 'G'.

Return: The total possible number of perfect matchings of

basepair edges in the bonding graph of .

Sample Dataset

>Rosalind_23

AGCUAGUCAU

Sample Output

12

Problem 33

Partial Permutations

s = …s1 sn s
s

s
s

s

s

http://rosalind.info/media/problems/pmch/perfect_matching.png
http://rosalind.info/media/problems/pmch/bonding_graph.png
http://rosalind.info/media/problems/pmch/bonding_crossing.png
http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/bonding-graph/
http://rosalind.info/glossary/adjacency-edges/
http://rosalind.info/glossary/basepair-edges/
http://rosalind.info/media/problems/pmch/bonding_graph.png
http://rosalind.info/media/problems/pmch/bonding_crossing.png

Partial Gene Orderings

Similar species will share many of the same genes, possibly with modifications.

Thus, we can compare two genomes by analyzing the orderings of their genes,

then inferring which rearrangements have separated the genes.

In “Enumerating Gene Orders”, we used permutations to model gene orderings. Yet two genomes

will have evolved along their own separate paths, and so they won't share all of the same genes. As

a result, we should modify the notion of permutation in order to quantify the notion of partial gene

orderings.

Problem

A partial permutation is an ordering of only objects taken from a collection containing objects

(i.e.,). For example, one partial permutation of three of the first eight positive integers is given

by .

The statistic counts the total number of partial permutations of objects that can be formed

from a collection of objects. Note that is just the number of permutations of objects,

which we found to be equal to in “Enumerating Gene Orders”.

Given: Positive integers and such that and .

Return: The total number of partial permutations , modulo 1,000,000.

Sample Dataset

21 7

Sample Output

51200

Problem 34

Introduction to Random Strings

Modeling Random Genomes

We already know that the genome is not just a random strand of nucleotides;

recall from “Finding a Motif in DNA” that motifs recur commonly across individuals

and species. If a DNA motif occurs in many different organisms, then chances are

good that it serves an important function.

At the same time, if you form a long enough DNA string, then you should theoretically be able to

k n
k ≤ n

(5, 7, 2)

P(n, k) k
n P(n, n) n

n! = n(n − 1)(n − 2) ⋯ (3)(2)

n k 100 ≥ n > 0 10 ≥ k > 0

P(n, k)

http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/genome-rearrangement/
http://rosalind.info/problems/perm/
http://rosalind.info/glossary/permutation/
http://rosalind.info/glossary/permutation/
http://rosalind.info/glossary/partial-permutation/
http://rosalind.info/problems/perm/
http://rosalind.info/glossary/modular-arithmetic/
http://rosalind.info/glossary/genome/
http://rosalind.info/problems/subs/
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/dna-string/

Figure 1. The graph of the common
logarithm function of x. For a given x-
value, the corresponding y-value is
the exponent to which we must raise
10 to obtain x. Note that x-values
between 0 and 1 get mapped to y-
values between -infinity and 0.

locate every possible short substring in the string. And genomes are very long; the human genome

contains about 3.2 billion base pairs. As a result, when analyzing an unknown piece of DNA, we

should try to ensure that a motif does not occur out of random chance.

To conclude whether motifs are random or not, we need to quantify the likelihood of finding a given

motif randomly. If a motif occurs randomly with high probability, then how can we really compare

two organisms to begin with? In other words, all very short DNA strings will appear randomly in a

genome, and very few long strings will appear; what is the critical motif length at which we can

throw out random chance and conclude that a motif appears in a genome for a reason?

In this problem, our first step toward understanding random occurrences of strings is to form a

simple model for constructing genomes randomly. We will then apply this model to a somewhat

simplified exercise: calculating the probability of a given motif occurring randomly at a fixed location

in the genome.

Problem

An array is a structure containing an ordered collection of

objects (numbers, strings, other arrays, etc.). We let

denote the -th value in array . You may like to think of an

array as simply a matrix having only one row.

A random string is constructed so that the probability of

choosing each subsequent symbol is based on a fixed

underlying symbol frequency.

GC-content offers us natural symbol frequencies for

constructing random DNA strings. If the GC-content is , then

we set the symbol frequencies of C and G equal to and the

symbol frequencies of A and T equal to . For example, if the GC-content is 40%, then as we

construct the string, the next symbol is 'G'/'C' with probability 0.2, and the next symbol is 'A'/'T' with

probability 0.3.

In practice, many probabilities wind up being very small. In order to work with small probabilities, we

may plug them into a function that "blows them up" for the sake of comparison. Specifically, the

common logarithm of (defined for and denoted) is the exponent to which we

must raise 10 to obtain .

See Figure 1 for a graph of the common logarithm function . In this graph, we can see

that the logarithm of -values between 0 and 1 always winds up mapping to -values between

and 0: -values near 0 have logarithms close to , and -values close to 1 have logarithms close

to . Thus, we will select the common logarithm as our function to "blow up" small probability values

for comparison.

Given: A DNA string of length at most 100 bp and an array containing at most 20 numbers

between 0 and 1.

Return: An array having the same length as in which represents the common logarithm

of the probability that a random string constructed with the GC-content found in will match

exactly.

Sample Dataset

ACGATACAA

0.129 0.287 0.423 0.476 0.641 0.742 0.783

A[k]
k A

x
x
2

1−x
2

x x > 0 (x)log10
x

y = (x)log10
x y −∞

x −∞ x
0

s A

B A B[k]
A[k] s

http://rosalind.info/media/problems/prob/common_log.png
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/probability/
http://rosalind.info/glossary/array/
http://rosalind.info/glossary/matrix/
http://rosalind.info/glossary/random-string/
http://rosalind.info/glossary/gc-content/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/common-logarithm/
http://rosalind.info/media/problems/prob/common_log.png
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/base-pair/

Sample Output

-5.737 -5.217 -5.263 -5.360 -5.958 -6.628 -7.009

Hint

One property of the logarithm function is that for any positive numbers and ,

.

Problem 35

Enumerating Oriented Gene Orderings

Synteny Blocks Have Orientations

In “Enumerating Gene Orders”, we introduced synteny blocks for two different

species, which are very similar areas of two species genomes that have been

flipped and moved around by rearrangements. In that problem, we used the

permutation to model the order of synteny blocks on a single chromosome.

However, each strand of a DNA molecule has an orientation (as RNA transcription only occurs in

one direction), and so to more prudently model chromosomes using synteny blocks, we should

provide each block with an orientation to indicate the strand on which it is located. Adding

orientations to synteny blocks requires us to expand our notion of permutation so that each index

in the permutation has its own orientation.

Problem

A signed permutation of length is some ordering of the positive integers in which

each integer is then provided with either a positive or negative sign (for the sake of simplicity, we omit

the positive sign). For example, is a signed permutation of length .

Given: A positive integer .

Return: The total number of signed permutations of length , followed by a list of all such

permutations (you may list the signed permutations in any order).

Sample Dataset

2

Sample Output

8

x y
(x ⋅ y) = (x) + (y)log10 log10 log10

n {1, 2, … , n}

π = (5, −3, −2, 1, 4) 5

n ≤ 6

n

http://rosalind.info/problems/perm/
http://rosalind.info/glossary/synteny-block/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/genome-rearrangement/
http://rosalind.info/glossary/permutation/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/rna-transcription/
http://rosalind.info/glossary/signed-permutation/

-1 -2
-1 2

1 -2

1 2

-2 -1

-2 1

2 -1

2 1

Problem 36

Finding a Spliced Motif

Motifs Are Rarely Contiguous

In “Finding a Motif in DNA”, we searched for occurrences of a motif as a substring

of a larger database genetic string. However, because a DNA strand coding for a

protein is often interspersed with introns (see “RNA Splicing”), we need a way to

recognize a motif that has been chopped up into pieces along a chromosome.

Problem

A subsequence of a string is a collection of symbols contained in order (though not necessarily

contiguously) in the string (e.g., ACG is a subsequence of TATGCTAAGATC). The indices of a

subsequence are the positions in the string at which the symbols of the subsequence appear; thus,

the indices of ACG in TATGCTAAGATC can be represented by (2, 5, 9).

As a substring can have multiple locations, a subsequence can have multiple collections of indices,

and the same index can be reused in more than one appearance of the subsequence; for example,

ACG is a subsequence of AACCGGTT in 8 different ways.

Given: Two DNA strings and (each of length at most 1 kbp) in FASTA format.

Return: One collection of indices of in which the symbols of appear as a subsequence of . If

multiple solutions exist, you may return any one.

Sample Dataset

>Rosalind_14

ACGTACGTGACG

>Rosalind_18

GTA

Sample Output

3 8 10

s t

s t s

http://rosalind.info/problems/subs/
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/intron/
http://rosalind.info/problems/splc/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/subsequence/
http://rosalind.info/glossary/subsequence-indices/
http://rosalind.info/glossary/position/
http://rosalind.info/glossary/location/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/fasta-format/

Figure 1. Illustration of transitions
and transversions.

Extra Information

For the mathematically inclined, we may equivalently say that is a subsequence

of if the characters of appear in the same order within . Even more formally, a

subsequence of is a string , where .

Problem 37

Transitions and Transversions

Certain Point Mutations are More Common

Point mutations occurring in DNA can be

divided into two types: transitions and

transversions. A transition substitutes

one purine for another () or one

pyrimidine for another (); that is, a transition does

not change the structure of the nucleobase. Conversely, a

transversion is the interchange of a purine for a pyrimidine

base, or vice-versa. See Figure 1. Transitions and

transversions can be defined analogously for RNA

mutations.

Because transversions require a more drastic change to

the base's chemical structure, they are less common than

transitions. Across the entire genome, the ratio of

transitions to transversions is on average about 2.

However, in coding regions, this ratio is typically higher (often exceeding 3) because a transition

appearing in coding regions happens to be less likely to change the encoded amino acid,

particularly when the substituted base is the third member of a codon (feel free to verify this fact

using the DNA codon table). Such a substitution, in which the organism's protein makeup is

unaffected, is known as a silent substitution.

Because of its potential for identifying coding DNA, the ratio of transitions to transversions between

two strands of DNA offers a quick and useful statistic for analyzing genomes.

Problem

For DNA strings and having the same length, their transition/transversion ratio is

the ratio of the total number of transitions to the total number of transversions, where symbol

substitutions are inferred from mismatched corresponding symbols as when calculating Hamming

distance (see “Counting Point Mutations”).

Given: Two DNA strings and of equal length (at most 1 kbp).

Return: The transition/transversion ratio .

t = ⋯t1t2 tm

s = ⋯s1s2 sn t s
s …si1 si2 sik 1 ≤ < ⋯ < ≤ ni1 i2 ik

A ↔ G
C ↔ T

s1 s2 R(,)s1 s2

s1 s2

R(,)s1 s2

http://rosalind.info/media/problems/tran/transitions-transversions.png
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/transition/
http://rosalind.info/glossary/transversion/
http://rosalind.info/glossary/purine/
http://rosalind.info/glossary/pyrimidine/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/media/problems/tran/transitions-transversions.png
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/gene-coding-region/
http://rosalind.info/glossary/dna-codon-table/
http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/silent-substitution/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/transitiontransversion-ratio/
http://rosalind.info/glossary/hamming-distance/
http://rosalind.info/problems/hamm/
http://rosalind.info/glossary/kbp/

Figure 1. A phylogeny illustrating
proposed evolutionary relationships
among the three domains of life:
Bacteria, Archaea, and Eukaryota.

Sample Dataset

>Rosalind_0209

GCAACGCACAACGAAAACCCTTAGGGACTGGATTATTTCGTGATCGTTGTAGTTATTGGA

AGTACGGGCATCAACCCAGTT

>Rosalind_2200

TTATCTGACAAAGAAAGCCGTCAACGGCTGGATAATTTCGCGATCGTGCTGGTTACTGGC

GGTACGAGTGTTCCTTTGGGT

Sample Output

1.21428571429

Problem 38

Completing a Tree

The Tree of Life

"As buds give rise by growth to fresh

buds, and these, if vigorous, branch out

and overtop on all sides many a feebler

branch, so by generation I believe it has

been with the great Tree of Life, which fills with its dead

and broken branches the crust of the earth, and covers the

surface with its ever-branching and beautiful ramifications."

Charles Darwin, The Origin of Species

A century and a half has passed since the publication of

Darwin's magnum opus, and yet the construction of a

single Tree of Life uniting life on Earth still has not been

completed, with perhaps as many as 90% of all living

species not yet catalogued (although a beautiful interactive animation has been produced by

OneZoom).

To get an insight about state-of-art attempts to build this tree, you may take a look at the Tree of

Life Web Project - collaborative effort of biologists from around the world to combine information

about diversity of life on Earth. It is a peer-reviewed ongoing project started in 1995, now it holds

more than 10,000 pages with characteristics of different groups of organisms and their evolutionary

history, and tree still grows.

Instead of trying to construct the entire Tree of Life all at once, we often wish to form a simpler tree

in which a collection of species have been clumped together for the sake of simplicity; such a

group is called a taxon (pl. taxa). For a given collection of taxa, a phylogeny is a treelike diagram

that best represents the evolutionary connections between the taxa: the construction of a particular

phylogeny depends on our specific assumptions regarding how these evolutionary relationships

http://rosalind.info/media/problems/tree/phylogenetic_tree.png
http://rosalind.info/glossary/tree-of-life/
http://www.onezoom.org/
http://www.tolweb.org/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/phylogeny/

Figure 2. A labeled tree with 6
vertices and 5 edges.

should be interpreted. See Figure 1.

Problem

An undirected graph is connected if there is a path

connecting any two nodes. A tree is a connected (undirected)

graph containing no cycles; this definition forces the tree to

have a branching structure organized around a central core of

nodes, just like its living counterpart. See Figure 2.

We have already grown familiar with trees in “Mendel's First

Law”, where we introduced the probability tree diagram to

visualize the outcomes of a random variable.

In the creation of a phylogeny, taxa are encoded by the tree's

leaves, or nodes having degree 1. A node of a tree having

degree larger than 1 is called an internal node.

Given: A positive integer () and an adjacency

list corresponding to a graph on nodes that contains no

cycles.

Return: The minimum number of edges that can be added to the graph to produce a tree.

Sample Dataset

10

1 2

2 8

4 10

5 9

6 10

7 9

Sample Output

3

Extra Information

After solving this problem, a standard mathematical exercise for the technically minded is to verify

that every tree having 2 or more nodes must contain at least two leaves.

Problem 39

Catalan Numbers and RNA Secondary Structures

n n ≤ 1000
n

http://rosalind.info/media/problems/tree/tree_graph.png
http://rosalind.info/media/problems/tree/phylogenetic_tree.png
http://rosalind.info/glossary/graph/
http://rosalind.info/glossary/connected-graph/
http://rosalind.info/glossary/path/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/tree/
http://rosalind.info/glossary/cycle/
http://rosalind.info/media/problems/tree/tree_graph.png
http://rosalind.info/problems/iprb/
http://rosalind.info/glossary/probability-tree-diagram/
http://rosalind.info/glossary/outcome/
http://rosalind.info/glossary/random-variable/
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/degree/
http://rosalind.info/glossary/internal-node/
http://rosalind.info/glossary/adjacency-list/
http://rosalind.info/glossary/edge/

Figure 1. Knot fun. Courtesy El Photo
Studio.

Figure 2. This pseudoknot was
formed when bonding occurred at
the endpoints of overlapping
intervals [1,3] and [2, 4].

Figure 3. The only two noncrossing
perfect matchings of basepair
edges (shown in red) for the RNA
string UAGCGUGAUCAC.

Figure 4. This figure shows all
possible noncrossing perfect
matchings in complete graphs on 2,

The Human Knot

You may have had the misfortune to

participate in a team-building event that

featured the "human knot," in which

everyone joins hands with two other

people, and the group must undo the giant knot of arms

without letting go (see Figure 1).

Let's consider a simplified version of the human knot. Say

that we have an even number of people at a party who are

standing in a circle, and they pair off and shake hands at

the same time. One combinatorial question at hand asks

us to count the total number of ways that the guests can

shake hands without any two pairs interfering with each

other by crossing arms.

This silly little counting problem is actually an excellent

analogy for RNA folding. In practice, base pairing can

occur anywhere along the RNA molecule, but the

secondary structure of RNA often forbids base pairs

crossing over each other, which forms a structure called a

pseudoknot (see Figure 2)). Pseudoknots are not

technically knots, but they nevertheless cause RNA to fold

over itself.

Forbidding pseudoknots offers an interesting wrinkle to the problem of counting potential RNA

secondary structures that we started working with in “Perfect Matchings and RNA Secondary

Structures”, in which every possible nucleotide of a strand of RNA must base pair with another

nucleotide.

Problem

A matching in a graph is noncrossing if none of its edges

cross each other. If we assume that the nodes of this graph

are arranged around a circle, and if we label these nodes with

positive integers between 1 and , then a matching is

noncrossing as long as there are not edges and

such that .

A noncrossing matching of basepair edges in the bonding

graph corresponding to an RNA string will correspond to a

possible secondary structure of the underlying RNA strand

that lacks pseudoknots, as shown in Figure 3.

In this problem, we will consider counting noncrossing perfect

matchings of basepair edges. As a motivating example of how

to count noncrossing perfect matchings, let denote the

number of noncrossing perfect matchings in the complete

graph . After setting , we can see that should

equal 1 as well. As for the case of a general , say that the

nodes of are labeled with the positive integers from 1 to

. We can join node 1 to any of the remaining

nodes; yet once we have chosen this node (say), we

cannot add another edge to the matching that crosses the

n

n
{i, j} {k, l}

i < k < j < l

cn

K2n = 1c0 c1
n

K2n

2n 2n − 1
m

{1, m}

http://rosalind.info/media/problems/cat/human_knot.png
http://rosalind.info/media/problems/cat/pseudoknot.png
http://rosalind.info/media/problems/cat/noncrossing_bonding_perfect.png
http://rosalind.info/media/problems/cat/catalan.png
http://rosalind.info/media/problems/cat/human_knot.png
http://rosalind.info/glossary/combinatorics/
http://rosalind.info/glossary/rna-folding/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/rna/
http://rosalind.info/glossary/nucleic-acid-secondary-structure/
http://rosalind.info/glossary/pseudoknot/
http://rosalind.info/media/problems/cat/pseudoknot.png
http://rosalind.info/problems/pmch/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/matching/
http://rosalind.info/glossary/graph/
http://rosalind.info/glossary/noncrossing-matching/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/basepair-edges/
http://rosalind.info/glossary/bonding-graph/
http://rosalind.info/glossary/rna-string/
http://rosalind.info/media/problems/cat/noncrossing_bonding_perfect.png
http://rosalind.info/glossary/complete-graph/

4, 6, and 8 nodes; the total number
of such matchings are 1, 2, 5, and
14, respectively. Courtesy Tom
Davis.

edge . As a result, we must match all the edges on

one side of to each other. This requirement forces

to be even, so that we can write for some positive

integer .

There are nodes on one side of and nodes on the other side of , so

that in turn there will be different ways of forming a perfect matching on the remaining

nodes of . If we let vary over all possible choices of even numbers between 1 and ,

then we obtain the recurrence relation . The resulting numbers counting

noncrossing perfect matchings in are called the Catalan numbers, and they appear in a huge

number of other settings. See Figure 4 for an illustration counting the first four Catalan numbers.

Given: An RNA string having the same number of occurrences of 'A' as 'U' and the same number

of occurrences of 'C' as 'G'. The length of the string is at most 300 bp.

Return: The total number of noncrossing perfect matchings of basepair edges in the bonding graph

of , modulo 1,000,000.

Sample Dataset

>Rosalind_57

AUAU

Sample Output

2

Hint

Write a function that counts Catalan numbers via dynamic programming. How can we modify this

function to apply to our given problem?

Problem 40

Error Correction in Reads

Genome Sequencing Isn't Perfect

In “Genome Assembly as Shortest Superstring”, we introduce the problem of

assembling a genome from a collection of reads. Even though genome

sequencing is a multi-billion dollar enterprise, sequencing machines that identify

reads still produce errors a substantial percentage of the time. To make matters

worse, these errors are unpredictable; it is difficult to determine if the machine has made an error,

let alone where in the read the error has occurred. For this reason, error correction in reads is

typically a vital first step in genome assembly.

{1, m}
{1, m} m

m = 2k
k

2k − 2 {1, m} 2n − 2k {1, m}
⋅ck−1 cn−k

K2n m n − 1 2n
= ⋅cn ∑n

k=1 ck−1 cn−k cn

K2n

s

s

http://rosalind.info/glossary/recurrence-relation/
http://rosalind.info/glossary/catalan-numbers/
http://rosalind.info/media/problems/cat/catalan.png
http://rosalind.info/glossary/modular-arithmetic/
http://rosalind.info/glossary/catalan-numbers/
http://rosalind.info/glossary/dynamic-programming/
http://rosalind.info/problems/long/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/read/
http://rosalind.info/glossary/genome-sequencing/

Problem

As is the case with point mutations, the most common type of sequencing error occurs when a single

nucleotide from a read is interpreted incorrectly.

Given: A collection of up to 1000 reads of equal length (at most 50 bp) in FASTA format. Some of

these reads were generated with a single-nucleotide error. For each read in the dataset, one of the

following applies:

 was correctly sequenced and appears in the dataset at least twice (possibly as a reverse

complement);

 is incorrect, it appears in the dataset exactly once, and its Hamming distance is 1 with respect

to exactly one correct read in the dataset (or its reverse complement).

Return: A list of all corrections in the form "[old read]->[new read]". (Each correction must be a

single symbol substitution, and you may return the corrections in any order.)

Sample Dataset

>Rosalind_52

TCATC

>Rosalind_44

TTCAT

>Rosalind_68

TCATC

>Rosalind_28

TGAAA

>Rosalind_95

GAGGA

>Rosalind_66

TTTCA

>Rosalind_33

ATCAA

>Rosalind_21

TTGAT

>Rosalind_18

TTTCC

Sample Output

TTCAT->TTGAT

GAGGA->GATGA

TTTCC->TTTCA

Problem 41

Counting Phylogenetic Ancestors

s

s

s

http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/read/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/reverse-complement/
http://rosalind.info/glossary/hamming-distance/

Figure 1. Trees come in lots of
different shapes.

Culling the Forest

In “Completing a Tree”, we introduced the

tree for the purposes of constructing

phylogenies. Yet the definition of tree as

a connected graph with no cycles

produces a huge class of different graphs, from simple

paths and star-like graphs to more familiar arboreal

structures (see Figure 1). Which of these graphs are

appropriate for phylogenetic study?

Modern evolutionary theory (beginning with Darwin) indicates that the only way a new species can

be created is if it splits off from an existing species after a population is isolated for an extended

period of time. This model of species evolution implies a very specific type of phylogeny, in which

internal nodes represent branching points of evolution where an ancestor species either evolved into

a new species or split into two new species: therefore, one edge of this internal node therefore

connects the node to its most recent ancestor, whereas one or two new edges connect it to its

immediate descendants. This framework offers a much clearer notion of how to characterize

phylogenies.

Problem

A binary tree is a tree in which each node has degree equal to at most 3. The binary tree will be our

main tool in the construction of phylogenies.

A rooted tree is a tree in which one node (the root) is set aside to serve as the pinnacle of the tree. A

standard graph theory exercise is to verify that for any two nodes of a tree, exactly one path connects

the nodes. In a rooted tree, every node will therefore have a single parent, or the unique node

such that the path from to the root contains . Any other node adjacent to is called a

child of because must be the parent of ; note that a node may have multiple children. In other

words, a rooted tree possesses an ordered hierarchy from the root down to its leaves, and as a result,

we may often view a rooted tree with undirected edges as a directed graph in which each edge is

oriented from parent to child. We should already be familiar with this idea; it's how the Rosalind

problem tree works!

Even though a binary tree can include nodes having degree 2, an unrooted binary tree is defined

more specifically: all internal nodes have degree 3. In turn, a rooted binary tree is such that only the

root has degree 2 (all other internal nodes have degree 3).

Given: A positive integer ().

Return: The number of internal nodes of any unrooted binary tree having leaves.

Sample Dataset

4

Sample Output

2

v w
v {v, w} x v

v v x

n 3 ≤ n ≤ 10000

n

http://rosalind.info/media/problems/inod/different_trees.png
http://rosalind.info/problems/tree/
http://rosalind.info/glossary/tree/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/path/
http://rosalind.info/media/problems/inod/different_trees.png
http://rosalind.info/glossary/internal-node/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/binary-tree/
http://rosalind.info/glossary/degree/
http://rosalind.info/glossary/rooted-tree/
http://rosalind.info/glossary/root/
http://rosalind.info/glossary/graph-theory/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/parent/
http://rosalind.info/glossary/path/
http://rosalind.info/glossary/adjacent-nodes/
http://rosalind.info/glossary/child/
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/directed-graph/
http://rosalind.info/problems/as-graph/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/rooted-binary-tree/

Figure 1. The 2-mer composition of
TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTGTCAAAATATCACATGTGCCT

Hint

In solving “Completing a Tree”, you may have formed the conjecture that a graph with no cycles and

 nodes is a tree precisely when it has edges. This is indeed a theorem of graph theory.

Problem 42

k-Mer Composition

Generalizing GC-Content

A length substring of a genetic string is

commonly called a k-mer. A genetic

string of length can be seen as

composed of overlapping k-

mers. The k-mer composition of a genetic string encodes the number of times that each possible

k-mer occurs in the string. See Figure 1. The 1-mer composition is a generalization of the GC-

content of a strand of DNA, and the 2-mer, 3-mer, and 4-mer compositions of a DNA string are also

commonly known as its di-nucleotide, tri-nucleotide, and tetra-nucleotide compositions.

The biological significance of k-mer composition is manyfold. GC-content is helpful not only in

helping to identify a piece of unknown DNA (see “Computing GC Content”), but also because a

genomic region having high GC-content compared to the rest of the genome signals that it may

belong to an exon. Analyzing k-mer composition is vital to fragment assembly as well.

In “Computing GC Content”, we also drew an analogy between analyzing the frequency of

characters and identifying the underlying language. For larger values of , the k-mer composition

offers a more robust fingerprint of a string's identity because it offers an analysis on the scale of

substrings (i.e., words) instead of that of single symbols. As a basis of comparison, in language

analysis, the k-mer composition of a text can be used not only to pin down the language, but also

often the author.

Problem

For a fixed positive integer , order all possible k-mers taken from an underlying alphabet

lexicographically.

Then the k-mer composition of a string can be represented by an array for which denotes

the number of times that the th k-mer (with respect to the lexicographic order) appears in .

Given: A DNA string in FASTA format (having length at most 100 kbp).

Return: The 4-mer composition of .

Sample Dataset

>Rosalind_6431

CTTCGAAAGTTTGGGCCGAGTCTTACAGTCGGTCTTGAAGCAAAGTAACGAACTCCACGG

n n − 1

k

n
n − k + 1

k

k

s A A[m]
m s

s

s

http://rosalind.info/media/problems/kmer/2-mer_composition.png
http://rosalind.info/problems/tree/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/k-mer/
http://rosalind.info/glossary/k-mer-composition/
http://rosalind.info/media/problems/kmer/2-mer_composition.png
http://rosalind.info/glossary/gc-content/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/problems/gc/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/exon/
http://rosalind.info/glossary/genome-assembly/
http://rosalind.info/problems/gc/
http://rosalind.info/glossary/lexicographic-order/
http://rosalind.info/glossary/array/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/kbp/

CCCTGACTACCGAACCAGTTGTGAGTACTCAACTGGGTGAGAGTGCAGTCCCTATTGAGT
TTCCGAGACTCACCGGGATTTTCGATCCAGCCTCAGTCCAGTCTTGTGGCCAACTCACCA

AATGACGTTGGAATATCCCTGTCTAGCTCACGCAGTACTTAGTAAGAGGTCGCTGCAGCG

GGGCAAGGAGATCGGAAAATGTGCTCTATATGCGACTAAAGCTCCTAACTTACACGTAGA

CTTGCCCGTGTTAAAAACTCGGCTCACATGCTGTCTGCGGCTGGCTGTATACAGTATCTA

CCTAATACCCTTCAGTTCGCCGCACAAAAGCTGGGAGTTACCGCGGAAATCACAG

Sample Output

4 1 4 3 0 1 1 5 1 3 1 2 2 1 2 0 1 1 3 1 2 1 3 1 1 1 1 2 2 5 1 3 0 2 2 1

 1 1 1 3 1 0 0 1 5 5 1 5 0 2 0 2 1 2 1 1 1 2 0 1 0 0 1 1 3 2 1 0 3 2 3

0 0 2 0 8 0 0 1 0 2 1 3 0 0 0 1 4 3 2 1 1 3 1 2 1 3 1 2 1 2 1 1 1 2 3 2

 1 1 0 1 1 3 2 1 2 6 2 1 1 1 2 3 3 3 2 3 0 3 2 1 1 0 0 1 4 3 0 1 5 0 2

0 1 2 1 3 0 1 2 2 1 1 0 3 0 0 4 5 0 3 0 2 1 1 3 0 3 2 2 1 1 0 2 1 0 2 2

 1 2 0 2 2 5 2 2 1 1 2 1 2 2 2 2 1 1 3 4 0 2 1 1 0 1 2 2 1 1 1 5 2 0 3

2 1 1 2 2 3 0 3 0 1 3 1 2 3 0 2 1 2 2 1 2 3 0 1 2 3 1 1 3 1 0 1 1 3 0 2

 1 2 2 0 2 1 1

Problem 43

Speeding Up Motif Finding

Shortening the Motif Search

In “Finding a Motif in DNA”, we discussed the problem of searching a genome for

a known motif. Because of the large scale of eukaryotic genomes, we need to

accomplish this computational task as efficiently as possible.

The standard method for locating one string as a substring of another string (and perhaps one

you implemented in “Finding a Motif in DNA”) is to move a sliding window across the larger string,

at each step starting at and matching subsequent symbols of to symbols of . After we have

located a match or mismatch, we then shift the window backwards to begin searching at .

The potential weakness of this method is as follows: say we have matched 100 symbols of to

before reaching a mismatch. The window-sliding method would then move back 99 symbols of

and start comparing to ; can we avoid some of this sliding?

For example, say that we are looking for in

. From to , we have matched seven

symbols of , and yet = G produces a mismatch with = T. We don't need to go all the

way back to and start matching with because , , and are all

different from . What about ? Because , the previous

mismatch of and guarantees the same mismatch with and .

Following this analysis, we may advance directly to and continue sliding our window, without

ever having to move it backward.

This method can be generalized to form the framework behind the Knuth-Morris-Pratt algorithm

(KMP), which was published in 1977 and offers an efficiency boost for determining whether a given

t s

s[k] t s
s[k + 1]

t s
s

t s

t = ACGTACGT
s = TAGGTACGTACGGCATCACG s[6] s[12]

t s[13] t[8]
s[7] t s[7] = C s[8] = G s[9] = T
t[1] = A s[10] t[1 : 4] = t[5 : 8] = ACGT
s[13] = G t[8] = T s[13] t[4]

s[14]

http://rosalind.info/problems/subs/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/eukaryote/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/substring/
http://rosalind.info/problems/subs/
http://rosalind.info/glossary/knuth-morris-pratt-algorithm/

motif can be located within a larger string.

Problem

A prefix of a length string is a substring ; a suffix of is a substring .

The failure array of is an array of length for which is the length of the longest substring

 that is equal to some prefix , where cannot equal (otherwise,

would always equal). By convention, .

Given: A DNA string (of length at most 100 kbp) in FASTA format.

Return: The failure array of .

Sample Dataset

>Rosalind_87

CAGCATGGTATCACAGCAGAG

Sample Output

0 0 0 1 2 0 0 0 0 0 0 1 2 1 2 3 4 5 3 0 0

Extra Information

If you would like a more precise technical explanation of the Knuth-Morris-Pratt algorithm, please

take a look at this site

Problem 44

Finding a Shared Spliced Motif

Locating Motifs Despite Introns

In “Finding a Shared Motif”, we discussed searching through a database

containing multiple genetic strings to find a longest common substring of these

strings, which served as a motif shared by the two strings. However, as we saw in

“RNA Splicing”, coding regions of DNA are often interspersed by introns that do

not code for proteins.

We therefore need to locate shared motifs that are separated across exons, which means that the

motifs are not required to be contiguous. To model this situation, we need to enlist subsequences.

Problem

n s s[1 : j] s s[k : n]

s P n P [k]
s[j : k] s[1 : k − j + 1] j 1 P [k]

k P [1] = 0

s

s

http://rosalind.info/glossary/prefix/
http://rosalind.info/glossary/suffix/
http://rosalind.info/glossary/failure-array/
http://rosalind.info/glossary/array/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/fasta-format/
http://www.inf.fh-flensburg.de/lang/algorithmen/pattern/kmpen.htm
http://rosalind.info/problems/lcsm/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/longest-common-substring/
http://rosalind.info/glossary/motif/
http://rosalind.info/problems/splc/
http://rosalind.info/glossary/gene-coding-region/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/intron/
http://rosalind.info/glossary/subsequence/

A string is a common subsequence of strings and if the symbols of appear in order as a

subsequence of both and . For example, "ACTG" is a common subsequence of "AACCTTGG" and

"ACACTGTGA".

Analogously to the definition of longest common substring, is a longest common subsequence of

 and if there does not exist a longer common subsequence of the two strings. Continuing our above

example, "ACCTTG" is a longest common subsequence of "AACCTTGG" and "ACACTGTGA", as is

"AACTGG".

Given: Two DNA strings and (each having length at most 1 kbp) in FASTA format.

Return: A longest common subsequence of and . (If more than one solution exists, you may

return any one.)

Sample Dataset

>Rosalind_23

AACCTTGG

>Rosalind_64

ACACTGTGA

Sample Output

AACTGG

Problem 45

Ordering Strings of Varying Length Lexicographically

Organizing Strings of Different Lengths

In “Enumerating k-mers Lexicographically”, we introduced the lexicographic order

for strings of the same length constructed from some ordered underlying alphabet.

However, our experience with dictionaries suggests that we should be able to

order strings of different lengths just as easily. That is, we already have an

intuitive sense that "APPLE" comes before "APPLET", which comes before "ARTS," and so we

should be able to apply this intuition toward cataloguing genetic strings of varying lengths.

Problem

Say that we have strings and with . Consider the substring

. We have two cases:

1. If , then we set because is shorter than (e.g.,).

2. Otherwise, . We define if and define if (e.g.,

 because).

u s t u
s t

u
s t

s t

s t

s = ⋯s1s2 sm t = ⋯t1t2 tn m < n
= t[1 : m]t′

s = t′ s t<Lex s t APPLE < APPLET
s ≠ t′ s t<Lex s <Lex t′ s t>Lex s >Lex t′

APPLET ARTS<Lex APPL ARTS<Lex

A

http://rosalind.info/glossary/common-subsequence/
http://rosalind.info/glossary/subsequence/
http://rosalind.info/glossary/longest-common-substring/
http://rosalind.info/glossary/longest-common-subsequence/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/problems/lexf/
http://rosalind.info/glossary/lexicographic-order/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/alphabet/
http://rosalind.info/glossary/genetic-string/

Given: A permutation of at most 12 symbols defining an ordered alphabet and a positive integer

 ().

Return: All strings of length at most formed from , ordered lexicographically. (Note: As in

“Enumerating k-mers Lexicographically”, alphabet order is based on the order in which the symbols are

given.)

Sample Dataset

D N A

3

Sample Output

D

DD

DDD

DDN

DDA

DN

DND

DNN

DNA

DA

DAD

DAN

DAA

N

ND

NDD

NDN

NDA

NN

NND

NNN

NNA

NA

NAD

NAN

NAA

A

AD

ADD

ADN

ADA

AN

AND

ANN

ANA

AA

AAD

AAN

A
n n ≤ 4

n A

http://rosalind.info/glossary/alphabet/
http://rosalind.info/problems/lexf/

Figure 1. The bonding graph of s =
UAGCGUGAUCAC (left) has a
perfect matching of basepair edges,
but this is not the case for t =
CAGCGUGAUCAC, in which one
symbol has been replaced.

Figure 2. A maximum matching
(highlighted in red) is shown in each
of the three graphs above. Verify that
no other matching can contain more
edges.

AAA

Extra Information

We can combine conditions (1) and (2) above into a single condition by adding a blank character

to the beginning of our ordered alphabet. Then, if is shorter than , we simply add as many

instances of as necessary to make and the same length.

Problem 46

Maximum Matchings and RNA Secondary Structures

Breaking the Bonds

In “Perfect Matchings and RNA Secondary Structures”, we considered a problem

that required us to assume that every possible nucleotide is involved in base

pairing to induce an RNA secondary structure. Yet the only way this could occur

is if the frequency of adenine in our RNA strand is equal to the frequency of uracil

and if the same holds for guanine and cytosine.

We will therefore begin to explore ways of counting secondary structures in which this condition is

not required. A more general combinatorial problem will ask instead for the total number of

secondary structures of a strand having a maximum possible number of base pairs.

Problem

The graph theoretical analogue of the quandary stated in the

introduction above is that if we have an RNA string that does

not have the same number of 'C's as 'G's and the same

number of 'A's as 'U's, then the bonding graph of cannot

possibly possess a perfect matching among its basepair

edges. For example, see Figure 1; in fact, most bonding

graphs will not contain a perfect matching.

In light of this fact, we define a maximum matching in a

graph as a matching containing as many edges as possible.

See Figure 2 for three maximum matchings in graphs.

A maximum matching of basepair edges will correspond to a

way of forming as many base pairs as possible in an RNA

string, as shown in Figure 3.

Given: An RNA string of length at most 100.

Return: The total possible number of maximum matchings

of basepair edges in the bonding graph of .

Sample Dataset

∅
s t

∅ s t

s

s

s

s

http://rosalind.info/media/problems/mmch/unbalanced_bonding_graph.png
http://rosalind.info/media/problems/mmch/maximum_matching.png
http://rosalind.info/problems/pmch/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/rna/
http://rosalind.info/glossary/nucleic-acid-secondary-structure/
http://rosalind.info/glossary/adenine/
http://rosalind.info/glossary/uracil/
http://rosalind.info/glossary/guanine/
http://rosalind.info/glossary/cytosine/
http://rosalind.info/glossary/combinatorics/
http://rosalind.info/glossary/graph-theory/
http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/bonding-graph/
http://rosalind.info/glossary/perfect-matching/
http://rosalind.info/glossary/basepair-edges/
http://rosalind.info/media/problems/mmch/unbalanced_bonding_graph.png
http://rosalind.info/glossary/maximum-matching/
http://rosalind.info/glossary/matching/
http://rosalind.info/glossary/edge/
http://rosalind.info/media/problems/mmch/maximum_matching.png
http://rosalind.info/media/problems/mmch/maximum_matching_bonding.png
http://rosalind.info/glossary/rna-string/

Figure 3. A red maximum matching
of basepair edges in the bonding
graph for t = CAGCGUGAUCAC.

>Rosalind_92

AUGCUUC

Sample Output

6

Problem 47

Creating a Distance Matrix

Introduction to Distance-Based Phylogeny

A number of different approaches are used to build phylogenies, each one

featuring its own computational strengths and weaknesses. One of these

measures is distance-based phylogeny, which constructs a tree from

evolutionary distances calculated between pairs of taxa.

A wide assortment of different measures exist for quantifying this evolutionary distance. Once we

have selected a distance function and used it to calculate the distance between every pair of taxa,

we place these pairwise distance functions into a table.

In this problem, we will consider an evolutionary function based on Hamming distance. Recall from

“Counting Point Mutations” that this function compares two homologous strands of DNA by

counting the minimum possible number of point mutations that could have occurred on the

evolutionary path between the two strands.

Problem

For two strings and of equal length, the p-distance between them, denoted , is the

proportion of corresponding symbols that differ between and .

For a general distance function on taxa (taxa are often represented by genetic

strings), we may encode the distances between pairs of taxa via a distance matrix in which

.

Given: A collection of () DNA strings of equal length (at most 1 kbp). Strings

are given in FASTA format.

Return: The matrix corresponding to the p-distance on the given strings. As always, note

that your answer is allowed an absolute error of 0.001.

s1 s2 (,)dp s1 s2
s1 s2

d n , , … ,s1 s2 sn

D
= d(,)Di,j si sj

n n ≤ 10 , … ,s1 sn

D dp

http://rosalind.info/media/problems/mmch/maximum_matching_bonding.png
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/distance-based-phylogeny/
http://rosalind.info/glossary/tree/
http://rosalind.info/glossary/taxon/
http://rosalind.info/problems/hamm/
http://rosalind.info/glossary/homologous/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/p-distance/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/distance-matrix/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/absolute-error/

Sample Dataset

>Rosalind_9499

TTTCCATTTA

>Rosalind_0942

GATTCATTTC

>Rosalind_6568

TTTCCATTTT

>Rosalind_1833

GTTCCATTTA

Sample Output

0.00000 0.40000 0.10000 0.10000

0.40000 0.00000 0.40000 0.30000

0.10000 0.40000 0.00000 0.20000

0.10000 0.30000 0.20000 0.00000

Problem 48

Reversal Distance

Rearrangements Power Large-Scale Genomic Changes

Perhaps the most common type of genome rearrangement is an inversion, which

flips an entire interval of DNA found on the same chromosome. As in the case of

calculating Hamming distance (see “Counting Point Mutations”), we would like to

determine the minimum number of inversions that have occurred on the

evolutionary path between two chromosomes. To do so, we will use the model introduced in

“Enumerating Gene Orders” in which a chromosome is represented by a permutation of its synteny

blocks.

Problem

A reversal of a permutation creates a new permutation by inverting some interval of the permutation;

, , and are all reversals of . The reversal

distance between two permutations and , written , is the minimum number of reversals

required to transform into (this assumes that and have the same length).

Given: A collection of at most 5 pairs of permutations, all of which have length 10.

Return: The reversal distance between each permutation pair.

Sample Dataset

(5, 2, 3, 1, 4) (5, 3, 4, 1, 2) (4, 1, 2, 3, 5) (5, 3, 2, 1, 4)
π σ (π, σ)drev

π σ π σ

http://rosalind.info/glossary/genome-rearrangement/
http://rosalind.info/glossary/inversion/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/hamming-distance/
http://rosalind.info/problems/hamm/
http://rosalind.info/problems/perm/
http://rosalind.info/glossary/permutation/
http://rosalind.info/glossary/synteny-block/
http://rosalind.info/glossary/reversal/
http://rosalind.info/glossary/reversal-distance/

1 2 3 4 5 6 7 8 9 10

3 1 5 2 7 4 9 6 10 8

3 10 8 2 5 4 7 1 6 9

5 2 3 1 7 4 10 8 6 9

8 6 7 9 4 1 3 10 2 5

8 2 7 6 9 1 5 3 10 4

3 9 10 4 1 8 6 7 5 2

2 9 8 5 1 7 3 4 6 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Sample Output

9 4 5 7 0

Hint

Don't be afraid to try an ugly solution.

Problem 49

Matching Random Motifs

More Random Strings

In “Introduction to Random Strings”, we discussed searching for motifs in large

genomes, in which random occurrences of the motif are possible. Our aim is to

quantify just how frequently random motifs occur.

One class of motifs of interest are promoters, or regions of DNA that initiate the transcription of a

gene. A promoter is usually located shortly before the start of its gene, and it contains specific

intervals of DNA that provide an initial binding site for RNA polymerase to initiate transcription.

Finding a promoter is usually the second step in gene prediction after establishing the presence of

an ORF (see “Open Reading Frames”).

Unfortunately, there is no quick rule for identifying promoters. In Escherichia coli, the promoter

contains two short intervals (TATAAT and TTGACA), which are respectively located 10 and 35 base

pairs upstream from the beginning of the gene's ORF. Yet even these two short intervals are

consensus strings (see “Consensus and Profile”): they represent average-case strings that are not

found intact in most promoters. Bacterial promoters further vary in that some contain additional

intervals used to bind to specific proteins or to change the intensity of transcription.

http://rosalind.info/problems/prob/
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/promoter/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/rna-transcription/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/rna-polymerase/
http://rosalind.info/glossary/open-reading-frame/
http://rosalind.info/problems/orf/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/consensus-string/
http://rosalind.info/problems/cons/
http://rosalind.info/glossary/string/

Eukaryotic promoters are even more difficult to characterize. Most have a TATA box (consensus

sequence: TATAAA), preceded by an interval called a B recognition element, or BRE. These

elements are typically located within 40 bp of the start of transcription. For that matter, eukaryotic

promoters can hold a larger number of additional "regulatory" intervals, which can be found as far as

several thousand base pairs upstream of the gene.

Problem

Our aim in this problem is to determine the probability with which a given motif (a known promoter,

say) occurs in a randomly constructed genome. Unfortunately, finding this probability is tricky; instead

of forming a long genome, we will form a large collection of smaller random strings having the same

length as the motif; these smaller strings represent the genome's substrings, which we can then test

against our motif.

Given a probabilistic event , the complement of is the collection of outcomes not belonging

to . Because takes place precisely when does not, we may also call "not ."

For a simple example, if is the event that a rolled die is 2 or 4, then . is the event

that the die is 1, 3, 5, or 6, and . In general, for any event we will have the identity that

.

Given: A positive integer , a number between 0 and 1, and a DNA string of

length at most 10 bp.

Return: The probability that if random DNA strings having the same length as are constructed

with GC-content (see “Introduction to Random Strings”), then at least one of the strings equals .

We allow for the same random string to be created more than once.

Sample Dataset

90000 0.6

ATAGCCGA

Sample Output

0.689

Problem 50

Counting Subsets

Characters and SNPs

A character is any feature (genetic, physical, etc.) that divides a collection of

organisms into two separate groups. One commonly used genetic character is

the possession of a single-nucleotide polymorphism, or SNP.

A A Ac

A Ac A Ac A

A Pr(A) = 1
3 Ac

Pr() =Ac 2
3

Pr(A) + Pr() = 1Ac

N ≤ 100000 x s

N s
x s

http://rosalind.info/glossary/tata-box/
http://rosalind.info/glossary/b-recognition-element/
http://rosalind.info/glossary/probability/
http://rosalind.info/glossary/random-string/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/probabilistic-event/
http://rosalind.info/glossary/complementary-event/
http://rosalind.info/glossary/outcome/
http://rosalind.info/glossary/gc-content/
http://rosalind.info/problems/prob/
http://rosalind.info/glossary/character/
http://rosalind.info/glossary/single-nucleotide-polymorphism/

In a process called genotyping, the SNP markers taken from a large number of human donors

have been used very successfully to catalogue the migration and differentiation of human

populations over the last 200,000 years. For $199, you can participate in National Geographic's

Genographic Project, and discover your own genetic heritage.

Whether we use genetic or physical characters, we may think of a collection of characters as a

collection of "ON"/"OFF" switches. An organism is said to possess a character in the "ON"

position (although often the assignment of "ON"/"OFF" is arbitrary). Given a collection of taxa, we

may represent a character by the collection of taxa possessing the character.

Problem

A set is the mathematical term for a loose collection of objects, called elements. Examples of sets

include and , the set containing all real numbers. We

even have the empty set, represented by or , which contains no elements at all. Two sets are

equal when they contain the same elements. In other words, in contrast to permutations, the ordering

of the elements of a set is unimportant (e.g., is equivalent

to). Sets are not allowed to contain duplicate elements,

so that is not a set. We have already used sets of 2

elements to represent edges from a graph.

A set is a subset of if every element of is also an element of , and we write . For

example, , and is a subset

of every set (including itself!).

As illustrated in the biological introduction, we can use subsets to represent the collection of taxa

possessing a character. However, the number of applications is endless; for example, an event in

probability can now be defined as a subset of the set containing all possible outcomes.

Our first question is to count the total number of possible subsets of a given set.

Given: A positive integer ().

Return: The total number of subsets of modulo 1,000,000.

Sample Dataset

3

Sample Output

8

Hint

What does counting subsets have to do with characters and "ON"/"OFF" switches?

Problem 51

n

{the moon, the sun, Wilford Brimley} R
∅ {}

{the moon, the sun, Wilford Brimley}
{Wilford Brimley, the moon, the sun}

{Wilford Brimley, the sun, the sun}

A B A B A ⊆ B
{the sun, the moon} ⊆ {the sun, the moon, Wilford Brimley} ∅

n n ≤ 1000

{1, 2, … , n}

http://rosalind.info/glossary/genotyping/
https://genographic.nationalgeographic.com/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/set/
http://rosalind.info/glossary/element/
http://rosalind.info/glossary/empty-set/
http://rosalind.info/glossary/permutation/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/graph/
http://rosalind.info/glossary/subset/
http://rosalind.info/glossary/probabilistic-event/
http://rosalind.info/glossary/probability/
http://rosalind.info/glossary/outcome/
http://rosalind.info/glossary/modular-arithmetic/

Figure 1. Alternative splicing induces
different protein isoforms.

Introduction to Alternative Splicing

The Baby and the Bathwater

In “RNA Splicing”, we described the

process by which the exons are spliced

out from a molecule of pre-mRNA and

reassembled to yield a final mRNA for the

purposes of protein translation.

However, the chaining of exons does not always proceed in

the same manner; alternative splicing describes the fact

that all the exons from a gene are not necessarily joined

together in order to produce an mRNA. The most common

form of alternative splicing is exon skipping, in which

certain exons are omitted along with introns.

Alternative splicing serves a vital evolutionary purpose, as it greatly increases the number of

different proteins that can be translated from a given gene; different proteins produced from the

same gene as a result of alternative splicing are called protein isoforms; see Figure 1 In fact,

about 95% of human genes are commonly spliced in more than one way. At the same time, when

alternative splicing goes wrong, it can create the same negative effects caused by mutations, and it

has been blamed for a number of genetic disorders.

In this problem, we will consider a simplified model of alternative splicing in which any of a

collection of exons can be chained together to create a final molecule of mRNA, under the

condition that we use a minimum number of exons () whose order is fixed. Because the exons

are not allowed to move around, we need only select a subset of at least of our exons to chain

into an mRNA.

The implied computational question is to count the total number of such subsets, which will provide

us with the total possible number of alternatively spliced isoforms for this model.

Problem

In “Counting Subsets”, we saw that the total number of subsets of a set containing elements is

equal to .

However, if we intend to count the total number of subsets of having a fixed size , then we use the

combination statistic , also written .

Given: Positive integers and with .

Return: The sum of combinations for all satisfying , modulo 1,000,000. In

shorthand, .

Sample Dataset

6 3

Sample Output

m
m

S n
2n

S k

C(n, k) ()n
k

n m 0 ≤ m ≤ n ≤ 2000

C(n, k) k m ≤ k ≤ n

()∑n
k=m

n
k

http://rosalind.info/media/problems/aspc/alternative_splicing.png
http://rosalind.info/problems/splc/
http://rosalind.info/glossary/exon/
http://rosalind.info/glossary/precursor-mrna/
http://rosalind.info/glossary/messenger-rna/
http://rosalind.info/glossary/translation/
http://rosalind.info/glossary/alternative-splicing/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/exon-skipping/
http://rosalind.info/glossary/intron/
http://rosalind.info/glossary/protein-isoform/
http://rosalind.info/media/problems/aspc/alternative_splicing.png
http://rosalind.info/problems/sset/
http://rosalind.info/glossary/subset/
http://rosalind.info/glossary/set/
http://rosalind.info/glossary/subset/
http://rosalind.info/glossary/combination/
http://rosalind.info/glossary/modular-arithmetic/

42

Problem 52

Edit Distance

Point Mutations Include Insertions and Deletions

In “Counting Point Mutations”, we saw that Hamming distance gave us a

preliminary notion of the evolutionary distance between two DNA strings by

counting the minimum number of single nucleotide substitutions that could have

occurred on the evolutionary path between the two strands.

However, in practice, homologous strands of DNA or protein are rarely the same length because

point mutations also include the insertion or deletion of a single nucleotide (and single amino acids

can be inserted or deleted from peptides). Thus, we need to incorporate these insertions and

deletions into the calculation of the minimum number of point mutations between two strings. One

of the simplest models charges a unit "cost" to any single-symbol insertion/deletion, then (in

keeping with parsimony) requests the minimum cost over all transformations of one genetic string

into another by point substitutions, insertions, and deletions.

Problem

Given two strings and (of possibly different lengths), the edit distance is the minimum

number of edit operations needed to transform into , where an edit operation is defined as the

substitution, insertion, or deletion of a single symbol.

The latter two operations incorporate the case in which a contiguous interval is inserted into or deleted

from a string; such an interval is called a gap. For the purposes of this problem, the insertion or

deletion of a gap of length still counts as distinct edit operations.

Given: Two protein strings and in FASTA format (each of length at most 1000 aa).

Return: The edit distance .

Sample Dataset

>Rosalind_39

PLEASANTLY

>Rosalind_11

MEANLY

Sample Output

5

s t (s, t)dE
s t

k k

s t

(s, t)dE

http://rosalind.info/problems/hamm/
http://rosalind.info/glossary/hamming-distance/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/homologous/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/peptide/
http://rosalind.info/glossary/parsimony/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/edit-distance/
http://rosalind.info/glossary/edit-operation/
http://rosalind.info/glossary/gap/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/amino-acid/

Problem 53

Expected Number of Restriction Sites

A Shot in the Dark

In “Locating Restriction Sites”, we first familiarized ourselves with restriction

enzymes. Recall that these enzymes are used by bacteria to cut through both

strands of viral DNA, thus disarming the virus: the viral DNA locations where these

cuts are made are known as restriction sites. Recall also that every restriction

enzyme is preprogrammed with a reverse palindromic interval of DNA to which it will bind and cut,

called a recognition sequence. These even length intervals are usually either 4 or 6 base pairs

long, although longer ones do exist; rare-cutter enzymes have recognition sequences of 8 or more

base pairs.

In this problem, we will ask a simple question: how does the bacterium "know" that it will probably

succeed in finding a restriction site within the virus's DNA? The answer is that the short length of

recognition sequences guarantees a large number of matches occurring randomly.

Intuitively, we would expect for a recognition sequence of length 6 to occur on average once every

 base pairs. Note that this fact does not imply that the associated restriction enzyme

will cut the viral DNA every 4,096 bp; it may find two restriction sites close together, then not find a

restriction site for many thousand nucleotides.

In this problem, we will generalize the problem of finding an average number of restriction sites to

take into account the GC-content of the underlying string being analyzed.

Problem

Say that you place a number of bets on your favorite sports teams. If their chances of winning are 0.3,

0.8, and 0.6, then you should expect on average to win 0.3 + 0.8 + 0.6 = 1.7 of your bets (of course,

you can never win exactly 1.7!)

More generally, if we have a collection of events , then the expected number of

events occurring is (consult the note following the problem for a

precise explanation of this fact). In this problem, we extend the idea of finding an expected number of

events to finding the expected number of times that a given string occurs as a substring of a random

string.

Given: A positive integer (), a DNA string of even length at most 10, and an

array of length at most 20, containing numbers between 0 and 1.

Return: An array having the same length as in which represents the expected number of

times that will appear as a substring of a random DNA string of length , where is formed with

GC-content (see “Introduction to Random Strings”).

Sample Dataset

10

AG

= 4, 09646

, , … ,A1 A2 An

Pr() + Pr() + ⋯ + Pr()A1 A2 An

n n ≤ 1, 000, 000 s
A

B A B[i]
s t n t

A[i]

http://rosalind.info/problems/revp/
http://rosalind.info/glossary/restriction-enzyme/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/restriction-site/
http://rosalind.info/glossary/reverse-palindrome/
http://rosalind.info/glossary/recognition-sequence/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/rare-cutter-enzyme/
http://rosalind.info/glossary/gc-content/
http://rosalind.info/glossary/probabilistic-event/
http://rosalind.info/glossary/expected-value/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/random-string/
http://rosalind.info/glossary/array/
http://rosalind.info/glossary/gc-content/
http://rosalind.info/problems/prob/

0.25 0.5 0.75

Sample Output

0.422 0.563 0.422

The Mathematical Details

In this problem, we are speaking of an expected number of events; how can we tie this into the

definition of expected value that we already have from “Calculating Expected Offspring”?

The answer relies on a slick mathematical trick. For any event , we can form a random variable

for , called an indicator random variable . For an outcome , when belongs

to and when belongs to .

For an indicator random variable , verify that .

You should also verify from our original formula for expected value that for any two random variables

 and , is equal to . As a result, the expected number of events

 occurring, or , reduces to

.

Problem 54

Motzkin Numbers and RNA Secondary Structures

Dull, Unhappy People

In “Catalan Numbers and RNA Secondary Structures”, we talked about counting

the number of ways for an even number of people to shake hands at a party

without crossing hands. However, in the real world, parties only contain an even

number of people about 40% of the time, and mathematicians don't enjoy

socializing. So we should instead count the total number of ways for some of the people at the

party to shake hands without crossing.

In the biological world, people are far more social, but not every nucleotide in a strand of RNA winds

up base pairing with another nucleotide during RNA folding. As a result, we want to loosen this

assumption and count the total number of different secondary structures of an RNA strand whose

base pairs don't overlap (i.e., we still forbid pseudoknots in the strand).

Problem

Similarly to our definition of the Catalan numbers, the -th Motzkin number counts the number

of ways to form a (not necessarily perfect) noncrossing matching in the complete graph

containing nodes. For example, Figure 1 demonstrates that . Note in this figure that

technically, the "trivial" matching that contains no edges at all is considered to be a matching,

A
A IA x (x) = 1IA x
A (x) = 0IA x Ac

(x) = 1IA E() = Pr(A)IA

X Y E(X + Y) E(X) + E(Y)
, , … ,A1 A2 Am E(+ + ⋯ +)IA1 IA2 IAm

Pr() + Pr() + ⋯ + Pr()A1 A2 Am

n mn

Kn

n = 21m5

http://rosalind.info/problems/iev/
http://rosalind.info/glossary/random-variable/
http://rosalind.info/glossary/indicator-random-variable/
http://rosalind.info/glossary/outcome/
http://rosalind.info/problems/cat/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/rna/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/rna-folding/
http://rosalind.info/glossary/nucleic-acid-secondary-structure/
http://rosalind.info/glossary/rna/
http://rosalind.info/glossary/pseudoknot/
http://rosalind.info/glossary/catalan-numbers/
http://rosalind.info/glossary/motzkin-numbers/
http://rosalind.info/glossary/perfect-matching/
http://rosalind.info/glossary/noncrossing-matching/
http://rosalind.info/glossary/complete-graph/
http://rosalind.info/glossary/node/
http://rosalind.info/media/problems/motz/Motzkin_numbers.png
http://rosalind.info/glossary/edge/

Figure 1. The 21 distinct ways to
form a noncrossing matching on 5
labeled nodes.

Figure 2. Two possible noncrossing
matchings of basepair edges in the
bonding graph corresponding to
RNA string UAGCGUGAUCAC.

because it satisfies the defining condition that no two edges

are incident to the same node.

How should we compute the Motzkin numbers? As with

Catalan numbers, we will take . To calculate

 in general, assume that the nodes of are labeled

around the outside of a circle with the integers between 1 and

, and consider node 1, which may or may not be involved in

a matching. If node 1 is not involved in a matching, then there

are ways of matching the remaining nodes. If

node 1 is involved in a matching, then say it is matched to

node : this leaves nodes on one side of edge

and nodes on the other side; as with the Catalan

numbers, no edge can connect the two sides, which gives us

 ways of matching the remaining edges.

Allowing to vary between and yields the following

recurrence relation for the Motzkin numbers:

.

To count all possible secondary structures of a given RNA

string that do not contain pseudoknots, we need to modify the Motzkin recurrence so that it counts

only matchings of basepair edges in the bonding graph corresponding to the RNA string; see Figure 2

Given: An RNA string of length at most 300 bp.

Return: The total number of noncrossing matchings of basepair edges in the bonding graph of ,

modulo 1,000,000.

Sample Dataset

>Rosalind_57

AUAU

Sample Output

7

Problem 55

Distances in Trees

Paths in Trees

For any two nodes of a tree, a unique path connects the nodes; more specifically,

there is a unique path connecting any pair of leaves. Why must this be the case?

If more than one path connected two nodes, then they would necessarily form a

cycle, which would violate the definition of tree.

= = 1m0 m1
mn Kn

n

mn−1 n − 1

k k − 2 {1, k}
n − k

⋅mk−2 mn−k

k 2 n

= + ⋅mn mn−1 ∑n
k=2 mk−2 mn−k

s

s

http://rosalind.info/media/problems/motz/Motzkin_numbers.png
http://rosalind.info/media/problems/motz/bonding_matching.png
http://rosalind.info/glossary/incident/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/recurrence-relation/
http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/basepair-edges/
http://rosalind.info/glossary/bonding-graph/
http://rosalind.info/media/problems/motz/bonding_matching.png
http://rosalind.info/glossary/modular-arithmetic/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/tree/
http://rosalind.info/glossary/path/
http://rosalind.info/glossary/leaf/

Figure 1. This tree can be
represented in Newick format in a
number of ways, including (C, D, (A,
B)); (A, (D, C), B); and (((A, B), C))D;.

The uniqueness of paths connecting nodes in a tree is helpful in phylogenetic analysis because a

rudimentary measure of the separation between two taxa is the distance between them in the tree,

which is equal to the number of edges on the unique path connecting the two leaves corresponding

to the taxa.

Problem

Newick format is a way of representing trees even more

concisely than using an adjacency list, especially when

dealing with trees whose internal nodes have not been labeled.

First, consider the case of a rooted tree . A collection of

leaves of are neighbors if they are all

adjacent to some internal node . Newick format for is

obtained by iterating the following key step: delete all the

edges from and label with .

This process is repeated all the way to the root, at which point

a semicolon signals the end of the tree.

A number of variations of Newick format exist. First, if a node

is not labeled in , then we simply leave blank the space

occupied by the node. In the key step, we can write

 in place of if the are

labeled; if none of the nodes are labeled, we can write

.

A second variation of Newick format occurs when is unrooted, in which case we simply select any

internal node to serve as the root of . A particularly peculiar case of Newick format arises when we

choose a leaf to serve as the root.

Note that there will be a large number of different ways to represent in Newick format; see Figure 1.

Given: A collection of trees () in Newick format, with each tree containing at most 200

nodes; each tree is followed by a pair of nodes and in .

Return: A collection of positive integers, for which the th integer represents the distance

between and in .

Sample Dataset

(cat)dog;

dog cat

(dog,cat);

dog cat

Sample Output

1 2

T
, , … ,v1 v2 vn T

u T

{ , u}vi T u (, , … ,)uv1 v2 vn

T

(, , … ,)v1 v2 vn (, , … ,)uv1 v2 vn vi

(, , … ,)

T
T

T

n n ≤ 40
Tk xk yk Tk

n k
xk yk Tk

http://rosalind.info/media/problems/nwck/quartet.png
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/distance/
http://rosalind.info/glossary/newick-format/
http://rosalind.info/glossary/internal-node/
http://rosalind.info/glossary/rooted-tree/
http://rosalind.info/glossary/neighbor/
http://rosalind.info/media/problems/nwck/quartet.png

Problem 56

Interleaving Two Motifs

Two Motifs, One Gene

Recall that in “Finding a Shared Spliced Motif”, we found the longest motif that

could have been shared by two genetic strings, allowing for the motif to be split

onto multiple exons in the process. As a result, we needed to find a longest

common subsequence of the two strings (which extended the problem of finding a

longest common substring from “Finding a Shared Motif”).

In this problem, we consider an inverse problem of sorts in which we are given two different motifs

and we wish to interleave them together in such a way as to produce a shortest possible genetic

string in which both motifs occur as subsequences.

Problem

A string is a supersequence of another string if contains as a subsequence.

A common supersequence of strings and is a string that serves as a supersequence of both

and . For example, "GACCTAGGAACTC" serves as a common supersequence of "ACGTC" and

"ATAT". A shortest common supersequence of and is a supersequence for which there does not

exist a shorter common supersequence. Continuing our example, "ACGTACT" is a shortest common

supersequence of "ACGTC" and "ATAT".

Given: Two DNA strings and .

Return: A shortest common supersequence of and . If multiple solutions exist, you may output

any one.

Sample Dataset

ATCTGAT

TGCATA

Sample Output

ATGCATGAT

Problem 57

Sorting by Reversals

s t s t

s t s
t

s t

s t

s t

http://rosalind.info/problems/lcsq/
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/exon/
http://rosalind.info/glossary/longest-common-subsequence/
http://rosalind.info/glossary/longest-common-substring/
http://rosalind.info/problems/lcsm/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/supersequence/
http://rosalind.info/glossary/subsequence/
http://rosalind.info/glossary/common-supersequence/
http://rosalind.info/glossary/shortest-common-supersequence/
http://rosalind.info/glossary/dna-string/

Reconstructing Evolutionary Histories

When we calculate the Hamming distance between two genetic strings, we can

easily infer a collection of point mutations that occurred on the evolutionary path

between the two strings by simply examining the mismatched symbols. However,

when calculating the reversal distance (see “Reversal Distance”), we only have the

minimum number of reversals separating two permutations.

The computational problem of sorting by reversals demands instead that we provide a minimum

list of reversals transforming one permutation into another. As a result, sorting by reversals

subsumes the calculation of reversal distance: once we have a minimum collection of reversals, the

reversal distance follows immediately.

Problem

A reversal of a permutation can be encoded by the two indices at the endpoints of the interval that it

inverts; for example, the reversal that transforms into is encoded by

.

A collection of reversals sorts into if the collection contains reversals, which when

successively applied to yield .

Given: Two permutations and , each of length 10.

Return: The reversal distance , followed by a collection of reversals sorting into . If

multiple collections of such reversals exist, you may return any one.

Sample Dataset

1 2 3 4 5 6 7 8 9 10

1 8 9 3 2 7 6 5 4 10

Sample Output

2

4 9

2 5

Problem 58

Inferring Protein from Spectrum

Introduction to Mass Spectrometry

(4, 1, 2, 6, 3, 5) (4, 1, 3, 6, 2, 5)
[3, 5]

π γ (π, γ)drev
π γ

π γ

(π, γ)drev π γ

http://rosalind.info/glossary/hamming-distance/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/reversal-distance/
http://rosalind.info/problems/rear/
http://rosalind.info/glossary/reversal/
http://rosalind.info/glossary/permutation/
http://rosalind.info/glossary/reversal-sorting/
http://rosalind.info/glossary/sorting/

In “Calculating Protein Mass”, we briefly mentioned an analytic chemical method

called mass spectrometry, which aims to measure the mass-to-charge ratio of a

particle or a molecule. In a mass spectrometer, a sample is vaporized (turned into

gas), and then particles from the sample are ionized. The resulting ions are

placed into an electromagnetic field, which separates them based on their charge

and mass. The output of the mass spectrometer is a mass spectrum, or a plot of

ions' possible mass-to-charge ratio values with the intensity (actual observed

frequency) of ions having these mass-to-charge values.

For the moment, we will ignore charge and consider a list of the ions' monoisotopic masses as a

simplified spectrum. Researchers do not possess cheap technology to go in and examine a

protein one amino acid at a time (molecules are too submicroscopic). Instead, to determine a

protein's structure, we will split several copies of the protein into smaller pieces, then weigh the

resulting fragments. To do this, we assume that each cut (breakage point) occurs between two

amino acids and that we can measure the mass of the resulting pieces for all possible cuts.

For example, the (unknown) protein "PRTEIN" can be cut in five possible ways: "P" and "RTEIN";

"PR" and "TEIN"; "PRT" and "EIN"; "PRTE" and "IN"; "PRTEI" and "N". We then can measure the

masses of all fragments, including the entire string. The "left" end of a protein is called its N-

terminus, and the ions corresponding to the protein string's prefixes (P, PR, PRT, PRTE, PRTEI)

are called b-ions. The "right" end of the protein is called its C-terminus, and the ions

corresponding to the string's suffixes (N, IN, EIN, TEIN, RTEIN) are called y-ions. The difference in

the masses of two adjacent b-ions (or y-ions) gives the mass of one amino acid residue; for

example, the difference between the masses of "PRT" and "PR" must be the mass of "T." By

extension, knowing the masses of every b-ion of a protein allows us to deduce the protein's

identity.

Problem

The prefix spectrum of a weighted string is the collection of all its prefix weights.

Given: A list of () positive real numbers.

Return: A protein string of length whose prefix spectrum is equal to (if multiple solutions

exist, you may output any one of them). Consult the monoisotopic mass table.

Sample Dataset

3524.8542

3710.9335

3841.974

3970.0326

4057.0646

Sample Output

WMQS

Problem 59

L n n ≤ 100

n − 1 L

http://rosalind.info/problems/prtm/
http://rosalind.info/glossary/mass-spectrometry/
http://rosalind.info/glossary/ion/
http://rosalind.info/glossary/mass-spectrum/
http://rosalind.info/glossary/intensity/
http://rosalind.info/glossary/monoisotopic-mass/
http://rosalind.info/glossary/simplified-spectrum/
http://rosalind.info/glossary/cut/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/n-terminus/
http://rosalind.info/glossary/prefix/
http://rosalind.info/glossary/b-ion/
http://rosalind.info/glossary/c-terminus/
http://rosalind.info/glossary/suffix/
http://rosalind.info/glossary/y-ion/
http://rosalind.info/glossary/residue/
http://rosalind.info/glossary/prefix-spectrum/
http://rosalind.info/glossary/string-weight/
http://rosalind.info/glossary/monoisotopic-mass-table/

Figure 1. The trie corresponding to
the strings 'apple', 'apropos',
'banana', 'bandana', and 'orange'.
Each path from root to leaf encodes
one of these strings.

Introduction to Pattern Matching

If At First You Don't Succeed...

We introduced the problem of finding a motif in a genetic string in “Finding a Motif

in DNA”. More commonly, we will have a collection of motifs that we may wish to

find in a larger string, for example when searching a genome for a collection of

known genes.

This application sets up the algorithmic problem of pattern matching, in which we are searching a

large string (called a text) for instances of a collection of smaller strings, called patterns. For the

moment, we will focus on requiring that all matches should be exact.

The most obvious method for finding exact patterns in a text is to simply apply a simple "sliding

window" algorithm for each pattern. However, this method is time-consuming if we have a large

number of patterns to consider (which will often be the case when dealing with a database of

genes). It would be better if instead of traversing the genome for every pattern, we could somehow

only traverse it once. To this end, we will need a data structure that can efficiently organize a

collection of patterns.

Problem

Given a collection of strings, their trie (often pronounced "try"

to avoid ambiguity with the general term tree) is a rooted tree

formed as follows. For every unique first symbol in the strings,

an edge is formed connecting the root to a new vertex. This

symbol is then used to label the edge.

We may then iterate the process by moving down one level as

follows. Say that an edge connecting the root to a node is

labeled with 'A'; then we delete the first symbol from every

string in the collection beginning with 'A' and then treat as

our root. We apply this process to all nodes that are adjacent

to the root, and then we move down another level and

continue. See Figure 1 for an example of a trie.

As a result of this method of construction, the symbols along

the edges of any path in the trie from the root to a leaf will

spell out a unique string from the collection, as long as no

string is a prefix of another in the collection (this would cause

the first string to be encoded as a path terminating at an internal node).

Given: A list of at most 100 DNA strings of length at most 100 bp, none of which is a prefix of

another.

Return: The adjacency list corresponding to the trie for these patterns, in the following format. If

 has nodes, first label the root with 1 and then label the remaining nodes with the integers 2

through in any order you like. Each edge of the adjacency list of will be encoded by a triple

containing the integer representing the edge's parent node, followed by the integer representing the

edge's child node, and finally the symbol labeling the edge.

Sample Dataset

v

v

T
T n

n T

http://rosalind.info/media/problems/trie/trie.png
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/problems/subs/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/pattern-matching/
http://rosalind.info/glossary/text/
http://rosalind.info/glossary/pattern/
http://rosalind.info/glossary/data-structure/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/trie/
http://rosalind.info/glossary/tree/
http://rosalind.info/glossary/rooted-tree/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/root/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/adjacent-nodes/
http://rosalind.info/media/problems/trie/trie.png
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/prefix/
http://rosalind.info/glossary/internal-node/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/adjacency-list/
http://rosalind.info/glossary/parent/
http://rosalind.info/glossary/child/
http://rosalind.info/glossary/symbol/

ATAGA

ATC

GAT

Sample Output

1 2 A

2 3 T

3 4 A

4 5 G

5 6 A

3 7 C

1 8 G

8 9 A

9 10 T

Problem 60

Comparing Spectra with the Spectral Convolution

Comparing Spectra

Suppose you have two mass spectra, and you want to check if they both were

obtained from the same protein; you will need some notion of spectra similarity.

The simplest possible metric would be to count the number of peaks in the mass

spectrum that the spectra share, called the shared peaks count; its analogue for

simplified spectra is the number of masses that the two spectra have in common.

The shared peaks count can be useful in the simplest cases, but it does not help us if, for

example, one spectrum corresponds to a peptide contained inside of another peptide from which

the second spectrum was obtained. In this case, the two spectra are very similar, but the shared

peaks count will be very small. However, if we shift one spectrum to the right or left, then shared

peaks will align. In the case of simplified spectra, this means that there is some shift value such

that adding to the weight of every element in one spectrum should create a large number of

matches in the other spectrum.

Problem

A multiset is a generalization of the notion of set to include a collection of objects in which each

object may occur more than once (the order in which objects are given is still unimportant). For a

multiset , the multiplicity of an element is the number of times that occurs in the set; this

multiplicity is denoted . Note that every set is included in the definition of multiset.

The Minkowski sum of multisets and containing real numbers is the new multiset

formed by taking all possible sums of an element from and an element from .

The Minkowski sum could be defined more concisely as

x
x

S x x
S(x)

S1 S2 ⊕S1 S2
+s1 s2 s1 S1 s2 S2

http://rosalind.info/glossary/mass-spectrum/
http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/shared-peaks-count/
http://rosalind.info/glossary/simplified-spectrum/
http://rosalind.info/glossary/peptide/
http://rosalind.info/glossary/peptide/
http://rosalind.info/glossary/multiset/
http://rosalind.info/glossary/set/
http://rosalind.info/glossary/multiplicity/
http://rosalind.info/glossary/minkowski-sum/

, The Minkowski difference is defined

analogously by taking all possible differences .

If and represent simplified spectra taken from two peptides, then is called the

spectral convolution of and . In this notation, the shared peaks count is represented by

, and the value of for which has the maximal value is the shift value

maximizing the number of shared masses of and .

Given: Two multisets of positive real numbers and . The size of each multiset is at most

200.

Return: The largest multiplicity of , as well as the absolute value of the number

maximizing (you may return any such value if multiple solutions exist).

Sample Dataset

186.07931 287.12699 548.20532 580.18077 681.22845 706.27446 782.27613 9

68.35544 968.35544

101.04768 158.06914 202.09536 318.09979 419.14747 463.17369

Sample Output

3

85.03163

Note

Observe that is equivalent to , but it is not usually the case that is the

same as ; in this case, one multiset can be obtained from the other by negating every

element.

Problem 61

Creating a Character Table

Introduction to Character-Based Phylogeny

Before the modern genetics revolution, phylogenies were constructed from

physical characters resulting from direct structural comparison of taxa. A great

deal of analysis relied on the fossil record, as fossils provided the only concrete

framework for studying the appearance of extinct species and for inferring how

they could have evolved into present-day organisms.

A classic case illustrating the utility of the fossil record is the case of dinosaur pelvic bones. In

1887, Harry Seeley proposed a new classification of dinosaurs into two orders, Saurischia and

Ornithischia: the former possessed hip bones shaped like those found in reptiles, whereas the

latter had a much different hip shape that resembled birds. Seeley's pelvic classification has

⊕ = + : ∈ , ∈S1 S2 s1 s2 s1 S1 s2 S2 ⊖S1 S2
−s1 s2

S1 S2 ⊖S1 S2
S1 S2

(⊖)(0)S2 S1 x (⊖)(x)S2 S1
S1 S2

S1 S2

⊖S1 S2 x
(⊖)(x)S1 S2

⊕S1 S2 ⊕S2 S1 ⊖S1 S2
⊖S2 S1

http://rosalind.info/glossary/minkowski-difference/
http://rosalind.info/glossary/spectral-convolution/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/character/
http://rosalind.info/glossary/taxon/

survived to the present day as the principal division of dinosaurs.

The key point is that hip bone shape is a physical character that separates all dinosaurs into two

different groups. Our hope is to construct a phylogeny solely from a collection of characters.

Throughout character-based phylogeny, our two-part assumption is that all taxa possessing a

character must have evolved from a single ancestor that introduced this character, and conversely,

any taxon not possessing the character cannot be descended from this ancestor.

Problem

Given a collection of taxa, any subset of these taxa can be seen as encoding a character that

divides the taxa into the sets and ; we can represent the character by , which is called a

split. Alternately, the character can be represented by a character array of length for which

 if the th taxon belongs to and if the th taxon belongs to (recall the

"ON"/"OFF" analogy from “Counting Subsets”).

At the same time, observe that the removal of an edge from an unrooted binary tree produces two

separate trees, each one containing a subset of the original taxa. So each edge may also be encoded

by a split .

A trivial character isolates a single taxon into a group of its own. The corresponding split

must be such that or contains only one element; the edge encoded by this split must be

incident to a leaf of the unrooted binary tree, and the array for the character contains exactly one 0 or

exactly one 1. Trivial characters are of no phylogenetic interest because they fail to provide us with

information regarding the relationships of taxa to each other. All other characters are called nontrivial

characters (and the associated splits are called nontrivial splits).

A character table is a matrix in which each row represents the array notation for a nontrivial

character. That is, entry denotes the "ON"/"OFF" position of the th character with respect to the

th taxon.

Given: An unrooted binary tree in Newick format for at most 200 species taxa.

Return: A character table having the same splits as the edge splits of . The columns of the

character table should encode the taxa ordered lexicographically; the rows of the character table may

be given in any order. Also, for any given character, the particular subset of taxa to which 1s are

assigned is arbitrary.

Sample Dataset

(dog,((elephant,mouse),robot),cat);

Sample Output

00110

00111

Problem 62

n S
S S c S ∣ S c

A n
A[j] = 1 j S A[j] = 0 j S c

S ∣ S c

S ∣ S c

S S c

C
Ci,j i

j

T

T

http://rosalind.info/glossary/character/
http://rosalind.info/glossary/subset/
http://rosalind.info/glossary/split/
http://rosalind.info/glossary/array-notation/
http://rosalind.info/problems/sset/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/trivial-character/
http://rosalind.info/glossary/incident/
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/nontrivial-character/
http://rosalind.info/glossary/nontrivial-split/
http://rosalind.info/glossary/character-table/
http://rosalind.info/glossary/newick-format/

Constructing a De Bruijn Graph

Wading Through the Reads

Because we use multiple copies of the genome to generate and identify reads for

the purposes of fragment assembly, the total length of all reads will be much

longer than the genome itself. This begs the definition of read coverage as the

average number of times that each nucleotide from the genome appears in the

reads. In other words, if the total length of our reads is 30 billion bp for a 3 billion bp genome, then

we have 10x read coverage.

To handle such a large number of -mers for the purposes of sequencing the genome, we need an

efficient and simple structure.

Problem

Consider a set of -mers of some unknown DNA string. Let denote the set containing

all reverse complements of the elements of . (recall from “Counting Subsets” that sets are not

allowed to contain duplicate elements).

The de Bruijn graph of order corresponding to is a digraph defined in the following

way:

Nodes of correspond to all -mers that are present as a substring of a -mer from

.

Edges of are encoded by the -mers of in the following way: for each

-mer in , form a directed edge (,).

Given: A collection of up to 1000 DNA strings of equal length (not exceeding 50 bp) corresponding

to a set of -mers.

Return: The adjacency list corresponding to the de Bruijn graph corresponding to .

Sample Dataset

TGAT

CATG

TCAT

ATGC

CATC

CATC

Sample Output

(ATC, TCA)

(ATG, TGA)

(ATG, TGC)

(CAT, ATC)

(CAT, ATG)

(GAT, ATG)

k

S (k + 1) S rc

S

Bk k S ∪ S rc

Bk k (k + 1)
S ∪ S rc

Bk (k + 1) S ∪ S rc

(k + 1) r S ∪ S rc r[1 : k] r[2 : k + 1]

S (k + 1)

S ∪ S rc

http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/read/
http://rosalind.info/glossary/genome-assembly/
http://rosalind.info/glossary/read-coverage/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/set/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/problems/sset/
http://rosalind.info/glossary/de-bruijn-graph/
http://rosalind.info/glossary/directed-graph/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/directed-edge/
http://rosalind.info/glossary/adjacency-list/

(GCA, CAT)
(TCA, CAT)

(TGA, GAT)

Problem 63

Edit Distance Alignment

Reconstructing Edit Distance

In “Counting Point Mutations”, the calculation of Hamming distance gave us a

clear way to model the sequence of point mutations transforming one genetic

string into another. By simply writing one string directly over the other, we could

count each mismatched symbol as a substitution.

However, in the calculation of edit distance (see “Edit Distance”), the two strings can have different

lengths; thus, simply superimposing one string over the other does us no good when it comes to

visualizing a sequence of edit operations transforming one string into the other. To remedy this, we

will introduce a new symbol to serve as a placeholder representing an inserted or deleted symbol;

furthermore, this placeholder will allow us to align two strings of differing lengths.

Problem

An alignment of two strings and is defined by two strings and satisfying the following three

conditions: 1. and must be formed from adding gap symbols "-" to each of and , respectively;

as a result, and will form subsequences of and . 2. and must have the same length. 3.

Two gap symbols may not be aligned; that is, if is a gap symbol, then cannot be a gap

symbol, and vice-versa.

We say that and augment and . Writing directly over so that symbols are aligned

provides us with a scenario for transforming into . Mismatched symbols from and correspond to

symbol substitutions; a gap symbol aligned with a non-gap symbol implies the insertion of

this symbol into ; a gap symbol aligned with a non-gap symbol implies the deletion of this

symbol from .

Thus, an alignment represents a transformation of into via edit operations. We define the

corresponding edit alignment score of and as (Hamming distance is used because

the gap symbol has been introduced for insertions and deletions). It follows that

, where the minimum is taken over all alignments of and . We call

such a minimum score alignment an optimal alignment (with respect to edit distance).

Given: Two protein strings and in FASTA format (with each string having length at most 1000

aa).

Return: The edit distance followed by two augmented strings and representing an

optimal alignment of and .

Sample Dataset

s t s′ t′

s′ t′ s t
s t s′ t′ s′ t′

[j]s′ [j]t′

s′ t′ s t s′ t′

s t s t
[j]s′ [j]t′

t [j]t′ [j]s′

s

s t
s′ t′ (,)dH s′ t′

(s, t) = (,)dE min ,s′ t′ dH s′ t′ s t

s t

(s, t)dE s′ t′

s t

http://rosalind.info/problems/hamm/
http://rosalind.info/glossary/hamming-distance/
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/symbol/
http://rosalind.info/glossary/edit-distance/
http://rosalind.info/problems/edit/
http://rosalind.info/glossary/edit-operation/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/gap-symbol/
http://rosalind.info/glossary/subsequence/
http://rosalind.info/glossary/augmented-string/
http://rosalind.info/glossary/edit-alignment-score/
http://rosalind.info/glossary/optimal-alignment/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/amino-acid/

>Rosalind_43

PRETTY

>Rosalind_97

PRTTEIN

Sample Output

4

PRETTY--

PR-TTEIN

Problem 64

Inferring Peptide from Full Spectrum

Ions Galore

In “Inferring Protein from Spectrum”, we inferred a protein string from a list of b-

ions. In practice, biologists have no way of distinguishing between b-ions and y-

ions in the simplified spectrum of a peptide. However, we will often possess a pair

of masses in the spectrum corresponding to a single cut. The two corresponding

ions complement each other: for example, mass("PR") + mass("TEIN") = mass("PRTEIN"). As a

result, we can easily infer the mass of a b-ion from its complementary y-ion and vice versa, as long

as we already know the parent mass, i.e., the mass of the entire peptide.

The theoretical simplified spectrum for a protein of length is constructed as follows: form all

possible cuts, then compute the mass of the b-ion and the y-ion at each cut. Duplicate masses are

allowed. You might guess how we could modify “Inferring Protein from Spectrum” to infer a peptide

from its theoretical simplified spectrum; here we consider a slightly modified form of this problem in

which we attempt to identify the interior region of a peptide given only b-ions and y-ions that are cut

within this region. As a result, we will have constant masses at the beginning and end of the

peptide that will be present in the mass of every b-ion and y-ion, respectively.

Problem

Say that we have a string containing as an internal substring, so that there exist nonempty

substrings and of such that can be written as . A t-prefix contains all of and none

of ; likewise, a t-suffix contains all of and none of .

Given: A list containing positive real numbers (). The first number in is the

parent mass of a peptide , and all other numbers represent the masses of some b-ions and y-ions of

 (in no particular order). You may assume that if the mass of a b-ion is present, then so is that of its

complementary y-ion, and vice-versa.

Return: A protein string of length for which there exist two positive real numbers and

such that for every prefix and suffix of , each of and is equal to an

P n

s t
s1 s2 s s ts1 s2 s1

s2 s2 s1

L 2n + 3 n ≤ 100 L
P

P

t n w1 w2
p s t w(p) + w1 w(s) + w2

http://rosalind.info/problems/spec/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/b-ion/
http://rosalind.info/glossary/y-ion/
http://rosalind.info/glossary/simplified-spectrum/
http://rosalind.info/glossary/peptide/
http://rosalind.info/glossary/cut/
http://rosalind.info/glossary/parent-mass/
http://rosalind.info/glossary/peptide/
http://rosalind.info/problems/spec/
http://rosalind.info/glossary/t-prefix/
http://rosalind.info/glossary/t-suffix/

element of . (In other words, there exists a protein string whose -prefix and -suffix weights

correspond to the non-parent mass values of .) If multiple solutions exist, you may output any one.

Sample Dataset

1988.21104821

610.391039105

738.485999105

766.492149105

863.544909105

867.528589105

992.587499105

995.623549105

1120.6824591

1124.6661391

1221.7188991

1249.7250491

1377.8200091

Sample Output

KEKEP

Problem 65

Independent Segregation of Chromosomes

Mendel's Work Examined

Mendel's laws of heredity were initially ignored, as only 11 papers have been

found that cite his paper between its publication in 1865 and 1900. One reason for

Mendel's lack of popularity is that information did not move quite so readily as in

the modern age; perhaps another reason is that as a friar in an Austrian abbey,

Mendel was already isolated from Europe's university community.

It is fair to say that no one who did initially read Mendel's work fully believed that traits for more

complex organisms, like humans, could be broken down into discrete units of heredity (i.e.,

Mendel's factors). This skepticism was well-founded in empirical studies of inheritance, which

indicated a far more complex picture of heredity than Mendel's theory dictated. The friar himself

admitted that representing every trait with a single factor was overly simplistic, and so he proposed

that some traits are polymorphic, or encoded by multiple different factors.

Yet any hereditary model would ultimately be lacking without an understanding of how traits are

physically passed from organisms to their offspring. This physical mechanism was facilitated by

Walther Flemming's 1879 discovery of chromosomes in salamander eggs during cell division,

followed by Theodor Boveri's observation that sea urchin embryos with chromatin removed failed to

L t t
L

http://rosalind.info/glossary/heredity/
http://rosalind.info/glossary/trait/
http://rosalind.info/glossary/factor/
http://rosalind.info/glossary/polymorphic-trait/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/chromatin/

develop correctly (implying that traits must somehow be encoded on chromosomes). By the turn of

the 20th century, Mendel's work had been rediscovered by Hugo de Vries and Carl Correns, but it

was still unclear how Mendel's hereditary model could be tied to chromosomes.

Fortunately, Walter Sutton demonstrated that grasshopper chromosomes occur in matched pairs

called homologous chromosomes, or homologs. We now know that the DNA found on

homologous chromosomes is identical except for minor variations attributable to SNPs and small

rearrangements, which are typically insertions and deletions. Sutton himself, working five decades

before Watson & Crick and possessing no real understanding of DNA, actually surmised that

variations to homologous chromosomes should somehow correspond to Mendel's alleles.

Yet it still remained to show how chromosomes themselves are inherited. Most multicellular

organisms are diploid, meaning that their cells possess two sets of chromosomes; humans are

included among diploid organisms, having 23 homologous chromosome pairs.

Gametes (i.e., sex cells) in diploid organisms form an exception and are haploid, meaning that

they only possess one chromosome from each pair of homologs. During the fusion of two gametes

of opposite sex, a diploid embryo is formed by simply uniting the two gametes' halved chromosome

sets.

Mendel's first law can now be explained by the fact that during the meiosis each gamete randomly

selects one of the two available alleles of the particular gene.

Mendel's second law follows from the fact that gametes select nonhomologous chromosomes

independently of each other; however, this law will hold only for factors encoded on nonhomologous

chromosomes, which leaves open the inheritance of factors encoded on homologous

chromosomes.

Problem

Consider a collection of coin flips. One of the most natural questions we can ask is if we flip a coin 92

times, what is the probability of obtaining 51 "heads", vs. 27 "heads", vs. 92 "heads"?

Each coin flip can be modeled by a uniform random variable in which each of the two outcomes

("heads" and "tails") has probability equal to 1/2. We may assume that these random variables are

independent (see “Independent Alleles”); in layman's terms, the outcomes of the two coin flips do not

influence each other.

A binomial random variable takes a value of if consecutive "coin flips" result in total

"heads" and total "tails." We write that .

Given: A positive integer .

Return: An array of length in which represents the common logarithm of the probability

that two diploid siblings share at least of their chromosomes (we do not consider recombination

for now).

Sample Dataset

5

Sample Output

0.000 -0.004 -0.024 -0.082 -0.206 -0.424 -0.765 -1.262 -1.969 -3.010

X k n k
n − k X ∈ Bin(n, 1/2)

n ≤ 50

A 2n A[k]
k 2n

http://rosalind.info/glossary/homologous-chromosomes/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/single-nucleotide-polymorphism/
http://rosalind.info/glossary/genome-rearrangement/
http://rosalind.info/glossary/diploid-cell/
http://rosalind.info/glossary/gamete/
http://rosalind.info/glossary/haploid-cell/
http://rosalind.info/glossary/mendels-first-law/
http://rosalind.info/glossary/meiosis/
http://rosalind.info/glossary/mendels-second-law/
http://rosalind.info/glossary/probability/
http://en.wikipedia.org/wiki/Rosencrantz_and_Guildenstern_Are_Dead
http://rosalind.info/glossary/uniform-random-variable/
http://rosalind.info/glossary/outcome/
http://rosalind.info/glossary/independent-random-variables/
http://rosalind.info/problems/lia/
http://rosalind.info/glossary/binomial-random-variable/
http://rosalind.info/glossary/array/
http://rosalind.info/glossary/common-logarithm/
http://rosalind.info/glossary/genetic-recombination/

Problem 66

Finding Disjoint Motifs in a Gene

Disjoint Motifs

In this problem, we will consider an algorithmic (but not particularly practical)

variant of motif finding for multiple motifs. Say we have two motifs corresponding

to the coding regions of genes, and we want to know whether these motifs can be

found in genes occupying the same region of the genome. To prevent exons from

coinciding, we further stipulate that the two motifs are nonoverlapping.

In this problem, we will ask whether two disjoint motifs can be located in a given string. We

considered a similar problem in “Interleaving Two Motifs”, which asked us to find a shortest possible

string containing two motifs; however, in that problem, the motifs were allowed to coincide.

Problem

Given three strings , , and , we say that and can be interwoven into if there is some

substring of made up of and as disjoint subsequences.

For example, the strings " " and " " can be interwoven into " ".

However, they cannot be interwoven into " " because of the appearance of

the four 'A's in the middle of the subsequences. Similarly, even though both " " is a shortest

common supersequence of and , it is not possible to interweave these two strings into

" " because the two desired subsequences must be disjoint; see “Interleaving Two Motifs” for

details on finding a shortest common supersequence of two strings.

Given: A text DNA string of length at most 10 kbp, followed by a collection of () DNA

strings of length at most 10 bp acting as patterns.

Return: An matrix for which if the th and th pattern strings can be

interwoven into and otherwise.

Sample Dataset

GACCACGGTT

ACAG

GT

CCG

Sample Output

0 0 1

0 1 0

1 0 0

s t u t u s
s t u

ACAG CCG GACCACGGTT
GACCACAAAAGGTT

ACACG
ACAG CCG

ACACG

s n n ≤ 10

n × n M = 1Mj,k j k

s = 0Mj,k

http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/gene-coding-region/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/exon/
http://rosalind.info/glossary/string/
http://rosalind.info/problems/scsp/
http://rosalind.info/glossary/interwoven-strings/
http://rosalind.info/glossary/subsequence/
http://rosalind.info/glossary/shortest-common-supersequence/
http://rosalind.info/problems/scsp/
http://rosalind.info/glossary/text/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/pattern/
http://rosalind.info/glossary/matrix/

Figure 1. The suffix tree for s =
GTCCGAAGCTCCGG. Note that the
dollar sign has been appended to a
substring of the tree to mark the end
of s. Every path from the root to a leaf
corresponds to a unique suffix of
GTCCGAAGCTCCGG, and each leaf
is labeled with the location in s of
the suffix ending at that leaf.

Citation

This problem follows Jones & Pevzner, An Introduction to Bioinformatics Algorithms, Problem 6.31

Problem 67

Finding the Longest Multiple Repeat

Long Repeats

We saw in “Introduction to Pattern Matching” that a data structure commonly

used to encode the relationships among a collection of strings was the trie, which

is particularly useful when the strings represent a collection of patterns that we

wish to match to a larger text.

The trie is helpful when processing multiple strings at once, but when we want to analyze a single

string, we need something different.

In this problem, we will use a new data structure to handle the problem of finding long repeats in the

genome. Recall from “Finding a Motif in DNA” that cataloguing these repeats is a problem of the

utmost interest to molecular biologists, as a natural correlation exists between the frequency of a

repeat and its influence on RNA transcription. Our aim is therefore to identify long repeats that

occur more than some predetermined number of times.

Problem

A repeated substring of a string of length is simply a

substring that appears in more than one location of ; more

specifically, a k-fold substring appears in at least k distinct

locations.

The suffix tree of , denoted , is defined as follows:

 is a rooted tree having exactly leaves.

Every edge of is labeled with a substring of ,

where is the string formed by adding a placeholder

symbol $ to the end of .

Every internal node of other than the root has at

least two children; i.e., it has degree at least 3.

The substring labels for the edges leading from a node to

its children must begin with different symbols.

By concatenating the substrings along edges, each path from the root to a leaf corresponds to a

unique suffix of .

See Figure 1 for an example of a suffix tree.

Given: A DNA string (of length at most 20 kbp) with $ appended, a positive integer , and a list

of edges defining the suffix tree of . Each edge is represented by four components:

1. the label of its parent node in ;

s n
s

s T(s)

T(s) n
T(s) s∗

s∗

s

T(s)

s∗

s k

s

T(s)

T(s)

http://rosalind.info/media/problems/lrep/suffix_tree.png
http://rosalind.info/problems/trie/
http://rosalind.info/glossary/data-structure/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/trie/
http://rosalind.info/glossary/pattern/
http://rosalind.info/glossary/text/
http://rosalind.info/glossary/repeat/
http://rosalind.info/glossary/genome/
http://rosalind.info/problems/subs/
http://rosalind.info/glossary/rna-transcription/
http://rosalind.info/glossary/repeated-substring/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/location/
http://rosalind.info/glossary/k-fold-substring/
http://rosalind.info/glossary/distinct/
http://rosalind.info/glossary/suffix-tree/
http://rosalind.info/glossary/rooted-tree/
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/internal-node/
http://rosalind.info/glossary/child/
http://rosalind.info/glossary/degree/
http://rosalind.info/glossary/suffix/
http://rosalind.info/media/problems/lrep/suffix_tree.png
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/

2. the label of its child node in ;

3. the location of the substring of assigned to the edge; and

4. the length of .

Return: The longest substring of that occurs at least times in . (If multiple solutions exist, you

may return any single solution.)

Sample Dataset

CATACATAC$

2

node1 node2 1 1

node1 node7 2 1

node1 node14 3 3

node1 node17 10 1

node2 node3 2 4

node2 node6 10 1

node3 node4 6 5

node3 node5 10 1

node7 node8 3 3

node7 node11 5 1

node8 node9 6 5

node8 node10 10 1

node11 node12 6 5

node11 node13 10 1

node14 node15 6 5

node14 node16 10 1

Sample Output

CATAC

Hint

How can repeated substrings of be located in ?

Problem 68

Newick Format with Edge Weights

Weighting the Tree

A vital goal of creating phylogenies is to quantify a molecular clock that indicates the amount of

evolutionary time separating two members of the phylogeny. To this end, we will assign numbers to

the edges of a tree so that the number assigned to an edge represents the amount of time

T(s)
t s∗

t

s k s

s T(s)

http://rosalind.info/glossary/location/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/tree/

separating the two species at each end of the edge. More generally, the

evolutionary time between any two species will be given by simply adding the

individual times connecting the nodes.

Problem

In a weighted tree, each edge is assigned a (usually positive) number, called its weight. The

distance between two nodes in a weighted tree becomes the sum of the weights along the unique path

connecting the nodes.

To generalize Newick format to the case of a weighted tree , during our repeated "key step," if leaves

 are neighbors in , and all these leaves are incident to , then we replace with

, where is now the weight on the edge .

Given: A collection of weighted trees () in Newick format, with each tree containing at

most 200 nodes; each tree is followed by a pair of nodes and in .

Return: A collection of numbers, for which the th number represents the distance between

and in .

Sample Dataset

(dog:42,cat:33);

cat dog

((dog:4,cat:3):74,robot:98,elephant:58);

dog elephant

Sample Output

75 136

Problem 69

Wobble Bonding and RNA Secondary Structures

Don't Look Down

We have discussed the problem of counting RNA secondary structures in

previous problems. In this problem, we will add some assumptions to those used

in “Motzkin Numbers and RNA Secondary Structures” to provide ourselves with an

ultimately robust way of counting feasible RNA secondary structures.

First, in addition to the classic Watson and Crick base pairing of adenine with uracil and cytosine

with guanine, uracil sometimes bonds with guanine, forming what is called a wobble base pair.

As a result, we would like to allow wobble base pairing.

T
, , … ,v1 v2 vn T u u

(: , : , … , :)uv1 d1 v2 d2 vn dn di { , u}vi

n n ≤ 40
Tk xk yk Tk

n k xk

yk Tk

http://rosalind.info/glossary/weighted-graph/
http://rosalind.info/glossary/edge-weight/
http://rosalind.info/glossary/distance/
http://rosalind.info/glossary/newick-format/
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/neighbor/
http://rosalind.info/glossary/incident/
http://rosalind.info/glossary/rna/
http://rosalind.info/glossary/nucleic-acid-secondary-structure/
http://rosalind.info/problems/motz/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/adenine/
http://rosalind.info/glossary/uracil/
http://rosalind.info/glossary/cytosine/
http://rosalind.info/glossary/guanine/
http://rosalind.info/glossary/wobble-base-pair/

Figure 1. A valid matching of
basepair edges in the bonding
graph of an RNA string, followed by
a diagram of how this bonding will
induce the resulting folded RNA.

Figure 2. All 12 possible valid
basepair matchings in the bonding
graph corresponding to the string s
= CGAUGCUAG (including the trivial
matching in which no edges are
matched.) Courtesy Brian Tjaden.

Second, although RNA folds over itself during base pairing, the structure of the molecule is rigid

enough to prevent bases located very close to each other on the strand from bonding to each other.

Problem

Given an RNA string , we will augment the bonding graph of

 by adding basepair edges connecting all occurrences of 'U'

to all occurrences of 'G' in order to represent possible wobble

base pairs.

We say that a matching in the bonding graph for is valid if it

is noncrossing (to prevent pseudoknots) and has the property

that a basepair edge in the matching cannot connect symbols

 and unless (to prevent nearby nucleotides

from base pairing).

See Figure 1 for an example of a valid matching if we allow

wobble base pairs. In this problem, we will wish to count all

possible valid matchings in a given bonding graph; see Figure

2 for all possible valid matchings in a small bonding graph,

assuming that we allow wobble base pairing.

Given: An RNA string (of length at most 200 bp).

Return: The total number of distinct valid matchings of

basepair edges in the bonding graph of . Assume that

wobble base pairing is allowed.

Sample Dataset

AUGCUAGUACGGAGCGAGUCUAGCGAGCGAUGUCGUGAGUAC

UAUAUAUGCGCAUAAGCCACGU

Sample Output

284850219977421

Problem 70

Counting Disease Carriers

Genetic Drift and the Hardy-Weinberg Principle

Mendel's laws of segration and independent assortment are excellent for the

study of individual organisms and their progeny, but they say nothing about how

alleles move through a population over time. Our first question is: when can we

assume that the ratio of an allele in a population, called the allele frequency, is

s
s

s

sj sk k ≥ j + 4

s

s

http://rosalind.info/media/problems/rnas/RNA_secondary_structure.png
http://rosalind.info/media/problems/rnas/counting_secondary_structures.png
http://rosalind.info/glossary/rna-string/
http://rosalind.info/glossary/bonding-graph/
http://rosalind.info/glossary/basepair-edges/
http://rosalind.info/glossary/valid-basepair-matching/
http://rosalind.info/glossary/noncrossing-matching/
http://rosalind.info/glossary/pseudoknot/
http://rosalind.info/media/problems/rnas/RNA_secondary_structure.png
http://rosalind.info/media/problems/rnas/counting_secondary_structures.png
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/distinct/
http://rosalind.info/glossary/mendels-first-law/
http://rosalind.info/glossary/mendels-second-law/
http://rosalind.info/glossary/allele/
http://rosalind.info/glossary/allele-frequency/

stable?

G. H. Hardy and Wilhelm Weinberg independently considered this question at the turn of the 20th

Century, shortly after Mendel's ideas had been rediscovered. They concluded that the percentage of

an allele in a population of individuals is in genetic equilibrium when five conditions are satisfied:

1. The population is so large that random changes in the allele frequency are negligible.

2. No new mutations are affecting the gene of interest;

3. The gene does not influence survival or reproduction, so that natural selection is not occurring;

4. Gene flow, or the change in allele frequency due to migration into and out of the population, is

negligible.

5. Mating occurs randomly with respect to the gene of interest.

The Hardy-Weinberg principle states that if a population is in genetic equilibrium for a given

allele, then its frequency will remain constant and evenly distributed through the population. Unless

the gene in question is important to survival or reproduction, Hardy-Weinberg usually offers a

reasonable enough model of population genetics.

One of the many benefits of the Mendelian theory of inheritance and simplifying models like Hardy-

Weinberg is that they help us predict the probability with which genetic diseases will be inherited,

so as to take appropriate preventative measures. Genetic diseases are usually caused by

mutations to chromosomes, which are passed on to subsequent generations.

The simplest and most widespread case of a genetic disease is a single gene disorder, which is

caused by a single mutated gene. Over 4,000 such human diseases have been identified, including

cystic fibrosis and sickle-cell anemia. In both of these cases, the individual must possess two

recessive alleles for a gene in order to contract the disease. Thus, carriers can live their entire lives

without knowing that they can pass the disease on to their children.

The above introduction to genetic equilibrium leaves us with a basic and yet very practical question

regarding gene disorders: if we know the number of people who have a disease encoded by a

recessive allele, can we predict the number of carriers in the population?

Problem

To model the Hardy-Weinberg principle, assume that we have a population of diploid individuals. If

an allele is in genetic equilibrium, then because mating is random, we may view the

chromosomes as receiving their alleles uniformly. In other words, if there are dominant alleles, then

the probability of a selected chromosome exhibiting the dominant allele is simply .

Because the first assumption of genetic equilibrium states that the population is so large as to be

ignored, we will assume that is infinite, so that we only need to concern ourselves with the value of

.

Given: An array for which represents the proportion of homozygous recessive individuals for

the -th Mendelian factor in a diploid population. Assume that the population is in genetic equilibrium

for all factors.

Return: An array having the same length as in which represents the probability that a

randomly selected individual carries at least one copy of the recessive allele for the -th factor.

Sample Dataset

0.1 0.25 0.5

N
2N

m
p = m

2N

N
p

A A[k]
k

B A B[k]
k

http://rosalind.info/glossary/genetic-equilibrium/
http://rosalind.info/glossary/mutation/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/gene-flow/
http://rosalind.info/glossary/hardy-weinberg-principle/
http://rosalind.info/glossary/mutation/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/single-gene-disorder/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/cystic-fibrosis/
http://rosalind.info/glossary/sickle-cell-anemia/
http://rosalind.info/glossary/recessive-allele/
http://rosalind.info/glossary/diploid-cell/
http://rosalind.info/glossary/uniform-random-variable/
http://rosalind.info/glossary/dominant-allele/
http://rosalind.info/glossary/array/
http://rosalind.info/glossary/homozygous-recessive/
http://rosalind.info/glossary/probability/
http://rosalind.info/glossary/recessive-allele/

Sample Output

0.532 0.75 0.914

Problem 71

Creating a Character Table from Genetic Strings

Phylogeny from Genetic Characters

In “Creating a Character Table”, we introduced the character table as a way of

representing a number of characters simultaneously. In that problem, we found a

character table representing an unrooted binary tree on a collection of taxa.

Of course, in practice, the problem operates in reverse. We first need to generate a character table

before we can model a phylogeny on this table. In modern genetics, a reliable way to obtain a large

number of characters is by using SNPs. As mentioned in “Counting Subsets”, for a given SNP, we

can divide taxa into two sets depending on which of two bases is present at the nucleotide, thus

defining the split of a character.

Problem

A collection of strings is characterizable if there are at most two possible choices for the symbol at

each position of the strings.

Given: A collection of at most 100 characterizable DNA strings, each of length at most 300 bp.

Return: A character table for which each nontrivial character encodes the symbol choice at a single

position of the strings. (Note: the choice of assigning '1' and '0' to the two states of each SNP in the

strings is arbitrary.)

Sample Dataset

ATGCTACC

CGTTTACC

ATTCGACC

AGTCTCCC

CGTCTATC

Sample Output

10110

10100

http://rosalind.info/problems/ctbl/
http://rosalind.info/glossary/character-table/
http://rosalind.info/glossary/character/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/single-nucleotide-polymorphism/
http://rosalind.info/problems/sset/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/split/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/characterizable-strings/
http://rosalind.info/glossary/position/
http://rosalind.info/glossary/dna-string/

Note

Recall that the character table does not encode trivial characters.

Problem 72

Counting Optimal Alignments

Beware of Alignment Inference

In “Edit Distance Alignment”, we introduced the concept of an alignment of two

genetic strings having differing lengths with respect to edit distance. This provided

us with a way of visualizing a specific collection of symbol substitutions,

insertions, and deletions that could have taken place on the evolutionary path

between the two strings.

However, simply finding one optimal alignment and declaring that it represents a true evolutionary

history is a dangerous idea because the actual evolutionary picture may be suboptimal. For that

matter, the collection of all optimal alignments may be huge, and the characteristics of these

alignments could differ widely.

In order to begin analyzing the collection of optimal alignments for a pair of strings, the first

question we will ask is simple: just how many optimal alignments exist?

Problem

Recall from “Edit Distance Alignment” that if and are the augmented strings corresponding to an

alignment of strings and , then the edit alignment score of and was given by the Hamming

distance (because and have the same length and already include gap symbols to

denote insertions/deletions).

As a result, we obtain , where the minimum is taken over all

alignments of and . Strings and achieving this minimum correspond to an optimal alignment

with respect to edit alignment score.

Given: Two protein strings and in FASTA format, each of length at most 1000 aa.

Return: The total number of optimal alignments of and with respect to edit alignment score,

modulo 134,217,727 (2 -1).

Sample Dataset

>Rosalind_78

PLEASANTLY

>Rosalind_33

MEANLY

s′ t′

s t s′ t′

(,)dH s′ t′ s′ t′

(s, t) = (,)dE min ,s′ t′ dH s′ t′

s t s′ t′

s t

s t
27

http://rosalind.info/problems/edta/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/edit-distance/
http://rosalind.info/glossary/optimal-alignment/
http://rosalind.info/problems/edta/
http://rosalind.info/glossary/augmented-string/
http://rosalind.info/glossary/edit-alignment-score/
http://rosalind.info/glossary/hamming-distance/
http://rosalind.info/glossary/gap-symbol/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/modular-arithmetic/

Sample Output

4

Why Are We Counting Modulo 134,217,727?

As a simple example, say that we attempt to count some statistic modulo 10. If computing the

statistic requires us to multiply a collection of integers, and at any point we multiply by a multiple

of 10, then the statistic will automatically become a multiple of 10 and thus congruent to 0 modulo

10. A similar issue can arise when we count a huge number modulo any composite number;

however, if we count modulo a large prime number (i.e., one without any divisors other than

itself), then problems can only ever arise if when counting our statistic, we multiply by a multiple of

.

Problem 73

Counting Unrooted Binary Trees

Counting Trees

A natural question is to be able to count the total number of distinct unrooted

binary trees having leaves, where each leaf is labeled by some taxon. Before

we can count all these trees, however, we need to have a notion of when two such

trees are the same.

Our tool will be the split. Recall from “Creating a Character Table” that removing any edge from a

tree separates its leaves into sets and , so that each edge of can be labeled by this

split . As a result, an unrooted binary tree can be represented uniquely by its collection of

splits.

Problem

Two unrooted binary trees and having the same labeled leaves are considered to be

equivalent if there is some assignment of labels to the internal nodes of and so that the

adjacency lists of the two trees coincide. As a result, note that and must have the same splits;

conversely, if the two trees do not have the same splits, then they are considered distinct.

Let denote the total number of distinct unrooted binary trees having labeled leaves.

Given: A positive integer ().

Return: The value of modulo 1,000,000.

Sample Dataset

5

p

p

n

T S S c T
S ∣ S c

T1 T2 n
T1 T2

T1 T2

b(n) n

n n ≤ 1000

b(n)

http://rosalind.info/glossary/modular-arithmetic/
http://rosalind.info/glossary/distinct/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/split/
http://rosalind.info/problems/ctbl/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/adjacency-list/
http://rosalind.info/glossary/distinct/

Sample Output

15

Problem 74

Global Alignment with Scoring Matrix

Generalizing the Alignment Score

The edit alignment score in “Edit Distance Alignment” counted the total number of

edit operations implied by an alignment; we could equivalently think of this scoring

function as assigning a cost of 1 to each such operation. Another common

scoring function awards matched symbols with 1 and penalizes

substituted/inserted/deleted symbols equally by assigning each one a score of 0, so that the

maximum score of an alignment becomes the length of a longest common subsequence of and

(see “Finding a Shared Spliced Motif”). In general, the alignment score is simply a scoring

function that assigns costs to edit operations encoded by the alignment.

One natural way of adding complexity to alignment scoring functions is by changing the alignment

score based on which symbols are substituted; many methods have been proposed for doing this.

Another way to do so is to vary the penalty assigned to the insertion or deletion of symbols.

In general, alignment scores can be either maximized or minimized depending on how scores are

established. The general problem of optimizing a particular alignment score is called global

alignment.

Problem

To penalize symbol substitutions differently depending on which two symbols are involved in the

substitution, we obtain a scoring matrix in which represents the (negative) score assigned to

a substitution of the th symbol of our alphabet with the th symbol of .

A gap penalty is the component deducted from alignment score due to the presence of a gap. A gap

penalty may be a function of the length of the gap; for example, a linear gap penalty is a constant

such that each inserted or deleted symbol is charged ; as a result, the cost of a gap of length is

equal to .

Given: Two protein strings and in FASTA format (each of length at most 1000 aa).

Return: The maximum alignment score between and . Use:

The BLOSUM62 scoring matrix.

Linear gap penalty equal to 5 (i.e., a cost of -5 is assessed for each gap symbol).

Sample Dataset

s t

S Si,j
i A j A

g
g L

gL

s t

s t

http://rosalind.info/glossary/edit-alignment-score/
http://rosalind.info/problems/edta/
http://rosalind.info/glossary/edit-operation/
http://rosalind.info/glossary/alignment/
http://rosalind.info/problems/lcsq/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/optimize/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/scoring-matrix/
http://rosalind.info/glossary/alphabet/
http://rosalind.info/glossary/gap-penalty/
http://rosalind.info/glossary/gap/
http://rosalind.info/glossary/linear-gap-penalty/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/blosum62/
http://rosalind.info/glossary/linear-gap-penalty/
http://rosalind.info/glossary/gap-symbol/

>Rosalind_67

PLEASANTLY

>Rosalind_17

MEANLY

Sample Output

8

Problem 75

Genome Assembly with Perfect Coverage

Cyclic Chromosomes

Recall that although chromosomes taken from eukaryotes have a linear structure,

many bacterial chromosomes are actually circular. We represented a linear

chromosome with a DNA string, so we only need to modify the definition of string

to model circular chromosomes.

Perfect coverage is the phenomenon in fragment assembly of having a read (or -mer) begin at

every possible location in the genome. Unfortunately, perfect coverage is still difficult to achieve, but

fragment assembly technology continues to improve by leaps and bounds, and perfect coverage is

perhaps not the fantasy it once was.

Problem

A circular string is a string that does not have an initial or terminal element; instead, the string is

viewed as a necklace of symbols. We can represent a circular string as a string enclosed in

parentheses. For example, consider the circular DNA string (ACGTAC), and note that because the

string "wraps around" at the end, this circular string can equally be represented by (CGTACA),

(GTACAC), (TACACG), (ACACGT), and (CACGTA). The definitions of substrings and superstrings are

easy to generalize to the case of circular strings (keeping in mind that substrings are allowed to wrap

around).

Given: A collection of (error-free) DNA -mers () taken from the same strand of a circular

chromosome. In this dataset, all -mers from this strand of the chromosome are present, and their de

Bruijn graph consists of exactly one simple cycle.

Return: A cyclic superstring of minimal length containing the reads (thus corresponding to a

candidate cyclic chromosome).

Sample Dataset

ATTAC

TACAG

k

k k ≤ 50
k

http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/eukaryote/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/perfect-coverage/
http://rosalind.info/glossary/location/
http://rosalind.info/glossary/genome-assembly/
http://rosalind.info/glossary/circular-string/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/de-bruijn-graph/
http://rosalind.info/glossary/simple-cycle/

GATTA
ACAGA

CAGAT

TTACA

AGATT

Sample Output

GATTACA

Note

The assumption made above that all reads derive from the same strand is practically unrealistic; in

reality, researchers will not know the strand of DNA from which a given read has been sequenced.

Problem 76

Matching a Spectrum to a Protein

Searching the Protein Database

Many proteins have already been identified for a wide variety of organisms.

Accordingly, there are a large number of protein databases available, and so the

first step after creating a mass spectrum for an unidentified protein is to search

through these databases for a known protein with a highly similar spectrum. In

this manner, many similar proteins found in different species have been identified, which aids

researchers in determining protein function.

In “Comparing Spectra with the Spectral Convolution”, we introduced the spectral convolution and

used it to measure the similarity of simplified spectra. In this problem, we would like to extend this

idea to find the most similar protein in a database to a spectrum taken from an unknown protein.

Our plan is to use the spectral convolution to find the largest possible number of masses that each

database protein shares with our candidate protein after shifting, and then select the database

protein having the largest such number of shared masses.

Problem

The complete spectrum of a weighted string is the multiset containing the weights of every

prefix and suffix of .

Given: A positive integer followed by a collection of protein strings , , ..., and a

multiset of positive numbers (corresponding to the complete spectrum of some unknown protein

string).

Return: The maximum multiplicity of taken over all strings , followed by the string

 for which this maximum multiplicity occurs (you may output any such value if multiple solutions

s S[s]
s

n n s1 s2 sn

R

R ⊖ S[]sk sk

sk

http://rosalind.info/glossary/protein/
http://rosalind.info/glossary/mass-spectrum/
http://rosalind.info/problems/conv/
http://rosalind.info/glossary/spectral-convolution/
http://rosalind.info/glossary/simplified-spectrum/
http://rosalind.info/glossary/complete-spectrum/
http://rosalind.info/glossary/weighted-string/
http://rosalind.info/glossary/multiset/
http://rosalind.info/glossary/string-weight/
http://rosalind.info/glossary/prefix/
http://rosalind.info/glossary/suffix/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/multiplicity/

exist).

Sample Dataset

4

GSDMQS

VWICN

IASWMQS

PVSMGAD

445.17838

115.02694

186.07931

314.13789

317.1198

215.09061

Sample Output

3

IASWMQS

Problem 77

Quartets

Incomplete Characters

The modern revolution in genome sequencing has produced a huge amount of

genetic data for a wide variety of species. One ultimate goal of possessing all this

information is to be able to construct complete phylogenies via direct genome

analysis.

For example, say that we have a gene shared by a number of taxa. We could create a character

based on whether species are known to possess the gene or not, and then use a huge character

table to construct our desired phylogeny. However, the present bottleneck with such a method is

that it assumes that we already possess complete genome information for all possible species.

The race is on to sequence as many species genomes as possible; for instance, the Genome 10K

Project aims to sequence 10,000 species genomes over the next decade. Yet for the time being,

possessing a complete genomic picture of all Earth's species remains a dream.

As a result of these practical limitations, we need to be able to work with partial characters,

which divide taxa into three separate groups: those possessing the character, those not

possessing the character, and those for which we do not yet have conclusive information.

Problem

A ∣ B A

http://rosalind.info/glossary/genome-sequencing/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/character/
http://rosalind.info/glossary/character-table/
http://rosalind.info/glossary/genome-10k-project/
http://rosalind.info/glossary/partial-character/

A partial split of a set of taxa models a partial character and is denoted by , where and

 are still the two disjoint subsets of taxa divided by the character. Unlike in the case of splits, we do

not necessarily require that ; corresponds to those taxa for which we lack

conclusive evidence regarding the character.

We can assemble a collection of partial characters into a generalized partial character table in

which the symbol is placed in if we do not have conclusive evidence regarding the th taxon

with respect to the th partial character.

A quartet is a partial split in which both and contain precisely two elements. For the

sake of simplicity, we often will consider quartets instead of partial characters. We say that a quartet

 is inferred from a partial split if and (or equivalently and

). For example, and can be inferred from .

Given: A partial character table .

Return: The collection of all quartets that can be inferred from the splits corresponding to the

underlying characters of .

Sample Dataset

cat dog elephant ostrich mouse rabbit robot

01xxx00

x11xx00

111x00x

Sample Output

{elephant, dog} {rabbit, robot}

{cat, dog} {mouse, rabbit}

{mouse, rabbit} {cat, elephant}

{dog, elephant} {mouse, rabbit}

Problem 78

Using the Spectrum Graph to Infer Peptides

Getting Real with Spectra

In “Inferring Peptide from Full Spectrum”, we considered an idealized version of the

simplified spectrum in which every cut through a given peptide was produced, so

that the spectrum possessed all possible b-ions and y-ions cutting the peptide. In

reality, not every cut will be produced in a spectrum, which may also contain

errors. As a result, it is difficult or impossible to recover an entire peptide from a single spectrum.

In the more practical case of a mass spectrum, where intensity is plotted against ions' mass-

charge ratios, inferring the protein is also greatly complicated by the presence of erratic peaks in

the spectrum.

S n A ∣ B A
B

A ∪ B = S (A ∪ B)c

C
x Ci,j j

i

A ∣ B A B

A ∣ B C ∣ D A ⊆ C B ⊆ D A ⊆ D
B ⊆ C {1, 3} ∣ {2, 4} {3, 5} ∣ {2, 4} {1, 3, 5} ∣ {2, 4}

C

C

http://rosalind.info/glossary/partial-split/
http://rosalind.info/glossary/disjoint-sets/
http://rosalind.info/glossary/subset/
http://rosalind.info/glossary/partial-character-table/
http://rosalind.info/glossary/quartet/
http://rosalind.info/problems/full/
http://rosalind.info/glossary/simplified-spectrum/
http://rosalind.info/glossary/cut/
http://rosalind.info/glossary/mass-spectrum/
http://rosalind.info/glossary/intensity/
http://rosalind.info/glossary/ion/

Problem

For a weighted alphabet and a collection of positive real numbers, the spectrum graph of is

a digraph constructed in the following way. First, create a node for every real number in . Then,

connect a pair of nodes with a directed edge if and is equal to the weight of a

single symbol in . We may then label the edge with this symbol.

In this problem, we say that a weighted string matches if there is some

increasing sequence of positive real numbers in such that

, , ..., and .

Given: A list (of length at most 100) containing positive real numbers.

Return: The longest protein string that matches the spectrum graph of (if multiple solutions

exist, you may output any one of them). Consult the monoisotopic mass table.

Sample Dataset

3524.8542

3623.5245

3710.9335

3841.974

3929.00603

3970.0326

4026.05879

4057.0646

4083.08025

Sample Output

WMSPG

Hint

How can our question be rephrased in terms of the spectrum graph?

Problem 79

Encoding Suffix Trees

Creating a Suffix Tree

In “Finding the Longest Multiple Repeat”, we introduced the suffix tree. This data

structure has a wide array of applications, one of which was to help us identify

long repeats in a genome. In that problem, we provided the tree as part of the

A L L
L

(u, v) v > u v − u
A

s = ⋯s1s2 sn L
(, , … ,)w1 w2 wn+1 L

w() = −s1 w2 w1 w() = −s2 w3 w2 w() = −sn wn+1 wn

L

L

http://rosalind.info/glossary/spectrum-graph/
http://rosalind.info/glossary/directed-graph/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/directed-edge/
http://rosalind.info/glossary/symbol-weight/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/monoisotopic-mass-table/
http://rosalind.info/problems/lrep/
http://rosalind.info/glossary/suffix-tree/
http://rosalind.info/glossary/data-structure/
http://rosalind.info/glossary/genome/

Figure 1. The suffix tree for s =
GTCCGAAGCTCCGG. Note that the
dollar sign has been appended to a
substring of the tree to mark the end
of s. Every path from the root to a leaf
corresponds to a unique suffix of
GTCCGAAGCTCCGG, and each leaf
is labeled with the location in s of
the suffix ending at that leaf.

dataset, but a vital computational exercise is to create the suffix tree solely from a string.

Problem

Given a string having length , recall that its suffix tree

 is defined by the following properties:

 is a rooted tree having exactly leaves.

Every edge of is labeled with a substring of ,

where is the string formed by adding a placeholder

symbol $ to the end of .

Every internal node of other than the root has at

least two children; i.e., it has degree at least 3.

The substring labels for the edges leading down from a

node to its children must begin with different symbols.

By concatenating the substrings along edges, each path

from the root to a leaf corresponds to a unique suffix of

.

Figure 1 contains an example of a suffix tree.

Given: A DNA string of length at most 1kbp.

Return: The substrings of encoding the edges of the suffix tree for . You may list these

substrings in any order.

Sample Dataset

ATAAATG$

Sample Output

AAATG$

G$

T

ATG$

TG$

A

A

AAATG$

G$

T

G$

$

Problem 80

Character-Based Phylogeny

s n
T(s)

T(s) n
T(s) s∗

s∗

s

T(s)

s∗

s

s∗ s

http://rosalind.info/media/problems/suff/suffix_tree.png
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/rooted-tree/
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/internal-node/
http://rosalind.info/glossary/child/
http://rosalind.info/glossary/degree/
http://rosalind.info/glossary/suffix/
http://rosalind.info/media/problems/suff/suffix_tree.png
http://rosalind.info/glossary/kbp/

Introduction to Character-Based Phylogeny

In “Creating a Character Table”, we discussed the construction of a character

table from a collection of characters represented by subsets of our taxa. However,

the ultimate goal is to be able to construct a phylogeny from this character table.

The issues at hand are that we want to ensure that we have enough characters to actually

construct a phylogeny, and that our characters do not conflict with each other.

Problem

Because a tree having nodes has edges (see “Completing a Tree”), removing a single edge

from a tree will produce two smaller, disjoint trees. Recall from “Creating a Character Table” that for

this reason, each edge of an unrooted binary tree corresponds to a split , where is a subset

of the taxa.

A consistent character table is one whose characters' splits do not conflict with the edge splits of

some unrooted binary tree on the taxa. More precisely, conflicts with if all

four intersections , , , and are nonempty. As a simple

example, consider the conflicting splits and .

More generally, given a consistent character table , an unrooted binary tree "models" if the

edge splits of agree with the splits induced from the characters of .

Given: A list of species () and an -column character table in which the th column

denotes the th species.

Return: An unrooted binary tree in Newick format that models .

Sample Dataset

cat dog elephant mouse rabbit rat

011101

001101

001100

Sample Output

(dog,(cat,rabbit),(rat,(elephant,mouse)));

Problem 81

Counting Quartets

Introduction to Quartet-Based Phylogeny

n n − 1

S ∣ S c S

T n ∣S1 S c
1 ∣S2 S c

2
∩S1 S2 ∩S1 S c

2 ∩S c
1 S2 ∩S c

1 S c
2

{a, b} ∣ {c, d} {a, c} ∣ {b, d}

C T C
T C

n n ≤ 80 n C j
j

C

http://rosalind.info/problems/ctbl/
http://rosalind.info/glossary/character-table/
http://rosalind.info/glossary/character/
http://rosalind.info/glossary/subset/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/tree/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/edge/
http://rosalind.info/problems/tree/
http://rosalind.info/glossary/disjoint-sets/
http://rosalind.info/problems/ctbl/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/split/
http://rosalind.info/glossary/subset/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/consistent-character-table/
http://rosalind.info/glossary/intersection/
http://rosalind.info/glossary/consistent-character-table/
http://rosalind.info/glossary/character/
http://rosalind.info/glossary/newick-format/

In “Quartets”, we introduced partial splits modeling partial characters on a

collection of taxa. Our aim is to use the quartets inferred from partial splits to

construct a phylogeny on the taxa. This procedure is called quartet-based

phylogeny.

We could construct a phylogeny directly from a collection of partial splits, but it is

not immediately clear how many different splits we would need. Hence, our first

question is to ask how many quartets are required to be able to infer a tree; in this

problem we will ask the reverse question of how many quartets can be inferred from a known tree.

Problem

A quartet is consistent with a binary tree if the quartet can be inferred from one of the

splits of (see “Quartets” for a description of inferring quartets from splits).

Let denote the total number of quartets that are consistent with .

Given: A positive integer (), followed by an unrooted binary tree in Newick

format on taxa.

Return: The value of modulo 1,000,000.

Sample Dataset

6

(lobster,(cat,dog),(caterpillar,(elephant,mouse)));

Sample Output

15

Problem 82

Enumerating Unrooted Binary Trees

Seeing the Forest

In “Counting Unrooted Binary Trees”, we found a way to count the number of

unrooted binary trees representing phylogenies on taxa. Our observation was

that two such trees are considered distinct when they do not share the same

collection of splits.

Counting all these trees is one task, but actually understanding how to write them out in a list (i.e.,

enumerating them) is another, which will be the focus of this problem.

Problem

AB ∣ CD T
T

q(T) T

n 4 ≤ n ≤ 5000 T
n

q(T)

n

http://rosalind.info/problems/qrt/
http://rosalind.info/glossary/partial-split/
http://rosalind.info/glossary/partial-character/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/quartet/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/quartet-based-phylogeny/
http://rosalind.info/glossary/consistent-quartet/
http://rosalind.info/glossary/binary-tree/
http://rosalind.info/glossary/split/
http://rosalind.info/problems/qrt/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/newick-format/
http://rosalind.info/glossary/modular-arithmetic/
http://rosalind.info/problems/cunr/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/distinct/
http://rosalind.info/glossary/split/
http://rosalind.info/glossary/enumerate/

Figure 1. This unrooted binary tree
may be represented in Newick
format by (((a,b),c),(d,e)); another
way of encoding it is ((a,b),(c,(d,e))).

Recall the definition of Newick format from “Distances in

Trees” as a way of encoding trees. See Figure 1 for an

example of Newick format applied to an unrooted binary tree

whose five leaves are labeled (note that the same tree can

have multiple Newick representations).

Given: A collection of species names representing taxa.

Return: A list containing all unrooted binary trees whose

leaves are these taxa. Trees should be given in Newick

format, with one tree on each line; the order of the trees is

unimportant.

Sample Dataset

dog cat mouse elephant

Sample Output

(((mouse,cat),elephant))dog;

(((elephant,mouse),cat))dog;

(((elephant,cat),mouse))dog;

Problem 83

Genome Assembly Using Reads

Putting the Puzzle Together

In practical genome sequencing, even if we assume that reads have been

sequenced without errors, we have no idea of knowing immediately the particular

strand of DNA a read has come from.

Also, our reads may not have the same length. In 1995, Idury and Waterman proposed a way to

boost read coverage and achieve uniform read length by breaking long reads into overlapping -

mers for some fixed value of . For example, a 100 bp read could be split into 51 overlapping 50-

mers.

Problem

A directed cycle is simply a cycle in a directed graph in which the head of one edge is equal to the

tail of the next (so that every edge in the cycle is traversed in the same direction).

For a set of DNA strings and a positive integer , let denote the collection of all possible -mers

of the strings in .

Given: A collection of (error-free) reads of equal length (not exceeding 50 bp). In this dataset, for

n

n

k
k

S k Sk k
S

S

∪k+1
rc

http://rosalind.info/media/problems/eubt/nwck3.png
http://rosalind.info/glossary/newick-format/
http://rosalind.info/problems/nwck/
http://rosalind.info/glossary/tree/
http://rosalind.info/media/problems/eubt/nwck3.png
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/read/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/read-coverage/
http://rosalind.info/glossary/directed-cycle/
http://rosalind.info/glossary/cycle/
http://rosalind.info/glossary/directed-graph/
http://rosalind.info/glossary/head/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/tail/
http://rosalind.info/glossary/set/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/read/
http://rosalind.info/glossary/base-pair/

some positive integer , the de Bruijn graph on consists of exactly two directed

cycles.

Return: A cyclic superstring of minimal length containing every read or its reverse complement.

Sample Dataset

AATCT

TGTAA

GATTA

ACAGA

Sample Output

GATTACA

Note

The reads "AATCT" and "TGTAA" are not present in the answer, but their reverse complements

"AGATT" and "TTACA" are present in the circular string (GATTACA).

Problem 84

Global Alignment with Constant Gap Penalty

Penalizing Large Insertions and Deletions

In dealing with global alignment in “Global Alignment with Scoring Matrix”, we

encountered a linear gap penalty, in which the insertion or deletion of a gap is

penalized by some constant times the length of the gap. However, this model is

not necessarily the most practical model, as one large rearrangement could have

inserted or deleted a long gap in a single step to transform one genetic string into another.

Problem

In a constant gap penalty, every gap receives some predetermined constant penalty, regardless of its

length. Thus, the insertion or deletion of 1000 contiguous symbols is penalized equally to that of a

single symbol.

Given: Two protein strings and in FASTA format (each of length at most 1000 aa).

Return: The maximum alignment score between and . Use:

The BLOSUM62 scoring matrix.

Constant gap penalty equal to 5.

k Bk ∪Sk+1 S rc
k+1

s t

s t

http://rosalind.info/glossary/de-bruijn-graph/
http://rosalind.info/glossary/directed-cycle/
http://rosalind.info/glossary/superstring/
http://rosalind.info/glossary/alignment/
http://rosalind.info/problems/glob/
http://rosalind.info/glossary/linear-gap-penalty/
http://rosalind.info/glossary/gap/
http://rosalind.info/glossary/genome-rearrangement/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/constant-gap-penalty/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/blosum62/
http://rosalind.info/glossary/constant-gap-penalty/

Sample Dataset

>Rosalind_79

PLEASANTLY

>Rosalind_41

MEANLY

Sample Output

13

Problem 85

Linguistic Complexity of a Genome

Getting Repetitive

We have seen that every genome contains a large number of repeats and noted

that the Alu repeat recurs around a million times on the human genome. Yet

exactly how repetitive is the human genome?

To frame such a vague question mathematically, we first need to make the observation that if the

genome were formed by adding nucleobases randomly, with each base having a 1/4 probability of

being added at each nucleotide position, then we should expect to see a huge number of different

substrings in the genome. Yet (to take a simple case) the genome containing only adenosine and

forming the DNA string "AAAAAA...AAA" has relatively very few distinct substrings.

Now, real genomes are formed by a process that chooses nucleotides somewhere in between

these two extreme cases, and so to quantify just how random this process is, we need to take the

percentage of distinct substrings appearing in a genome with respect to the maximum possible

number of distinct substrings that could appear in a genome of the same length.

Problem

Given a length string formed over an alphabet of size , let the "substring count"

denote the total number of distinct substrings of . Furthermore, let the "maximum substring count"

 denote the maximum number of distinct substrings that could appear in a string of length

formed over .

The linguistic complexity of (written) is equal to ; in other words, represents

the percentage of observed substrings of to the total number that are theoretically possible. Note

that , with smaller values of indicating that is more repetitive.

As an example, consider the DNA string () . In the following table, we

demonstrate that by considering the number of observed and possible length

n s A a sub(s)
s

m(a, n) n
A

s lc(s)
sub(s)
m(a,n) lc(s)

s
0 < lc(s) < 1 lc(s) s

a = 4 s = ATTTGGATT
lc(s) = = 0.87535

40 k

(s)k m(a, k, n)

http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/repeat/
http://rosalind.info/glossary/alu-repeat/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/nucleotide/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/distinct/
http://rosalind.info/glossary/alphabet/
http://rosalind.info/glossary/linguistic-complexity/
http://rosalind.info/glossary/dna-string/

substrings of , which are denoted by and , respectively. (Observe that

 and .)

1 3 4

2 5 8

3 6 7

4 6 6

5 5 5

6 4 4

7 3 3

8 2 2

9 1 1

Total 35 40

Given: A DNA string of length at most 100 kbp.

Return: The linguistic complexity .

Sample Dataset

ATTTGGATT

Sample Output

0.875

Hint

Why does this problem follow “Encoding Suffix Trees”?

Problem 86

Local Alignment with Scoring Matrix

Aligning Similar Substrings

Whereas global alignment (see “Global Alignment with Scoring Matrix”) can be

helpful for comparing genetic strings of similar length that resemble each other,

often we will be presented with strings that are mostly dissimilar except for some

unknown region of the strings, which may represent a shared gene. To find such

genes, we need to modify global alignment to instead search for shared motifs in the form of locally

similar regions (recall “Finding a Shared Motif” and “Finding a Shared Spliced Motif”).

s (s)subk m(a, k, n)
m(a, n) = m(a, k, n) = 40∑n

k=1 sub(s) = (s) = 35∑n
k=1 subk

k (s)subk m(a, k, n)

s

lc(s)

http://rosalind.info/glossary/kbp/
http://rosalind.info/problems/suff/
http://rosalind.info/glossary/alignment/
http://rosalind.info/problems/glob/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/motif/
http://rosalind.info/problems/lcsm/
http://rosalind.info/problems/lcsq/

Using global alignment often fails to find shared motifs hidden in larger strings because (especially

if the similar region is found on different ends of the string) aligning the strings causes gap penalties

to rack up.

If we are only interested in comparing the regions of similarity, then we would like to have some

way of disregarding the parts of the strings that don't resemble each other. The way to do this is to

produce alignment scores for all possible pairs of substrings.

Problem

A local alignment of two strings and is an alignment of substrings and of and ,

respectively. Let denote the score of an optimal alignment of and with respect to some

predetermined alignment score.

Given: Two protein strings and in FASTA format (each having length at most 1000 aa).

Return: A maximum alignment score along with substrings and of and , respectively, which

produce this maximum alignment score (multiple solutions may exist, in which case you may output

any one). Use:

The PAM250 scoring matrix.

Linear gap penalty equal to 5.

Sample Dataset

>Rosalind_80

MEANLYPRTEINSTRING

>Rosalind_21

PLEASANTLYEINSTEIN

Sample Output

23

LYPRTEINSTRIN

LYEINSTEIN

Problem 87

Inferring Genotype from a Pedigree

Lying in Wait

Single gene disorders can be encoded by either dominant or recessive alleles. In

the latter case, the affected person usually has two healthy carrier parents, who

were usually unaware that their child could inherit a deadly or debilitating genetic

condition from them.

s t r u s t
opt(r, u) r u

s t

r u s t

http://rosalind.info/glossary/gap-penalty/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/local-alignment/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/optimal-alignment/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/pam250/
http://rosalind.info/glossary/scoring-matrix/
http://rosalind.info/glossary/linear-gap-penalty/
http://rosalind.info/glossary/single-gene-disorder/
http://rosalind.info/glossary/dominant-allele/
http://rosalind.info/glossary/recessive-allele/
http://rosalind.info/glossary/genetic-carrier/

Figure 1. The rooted binary tree
whose Newick format is (aa,
((Aa,AA),AA)). Each leaf encodes the
genotype of an ancestor for the given
individual, which is represented by
'?'.

We know from Mendel's first law that any offspring of two heterozygous carriers has a 25% chance

of inheriting a recessive disorder. Knowing your own genotype is therefore important when deciding

to have children, and genetic screening will prove vital for preventive medicine in the coming years.

In this problem, we will consider an exercise in which we determine the probability of an organism

exhibiting each possible genotype for a factor knowing only the genotypes of the organism's

ancestors.

Problem

A rooted binary tree can be used to model the pedigree of an

individual. In this case, rather than time progressing from the

root to the leaves, the tree is viewed upside down with time

progressing from an individual's ancestors (at the leaves) to

the individual (at the root).

An example of a pedigree for a single factor in which only the

genotypes of ancestors are given is shown in Figure 1.

Given: A rooted binary tree in Newick format encoding

an individual's pedigree for a Mendelian factor whose alleles

are A (dominant) and a (recessive).

Return: Three numbers between 0 and 1, corresponding to

the respective probabilities that the individual at the root of

will exhibit the "AA", "Aa" and "aa" genotypes.

Sample Dataset

((((Aa,aa),(Aa,Aa)),((aa,aa),(aa,AA))),Aa);

Sample Output

0.156 0.5 0.344

Problem 88

Maximizing the Gap Symbols of an Optimal Alignment

Adjusting Alignment Parameters

As we change the parameters contributing to alignment score, the nature of

alignments achieving the maximum score may change. One feature of maximum-

score alignments worthy of consideration is the number and size of their gaps. In

this problem, we would like to determine the maximum number of possible gaps

in any optimal alignment based solely on the parameter values chosen.

T

T

http://rosalind.info/media/problems/mend/allele_pedigree.png
http://rosalind.info/glossary/mendels-first-law/
http://rosalind.info/glossary/genotype/
http://rosalind.info/glossary/rooted-binary-tree/
http://rosalind.info/glossary/root/
http://rosalind.info/glossary/leaf/
http://rosalind.info/glossary/factor/
http://rosalind.info/media/problems/mend/allele_pedigree.png
http://rosalind.info/glossary/newick-format/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/gap/
http://rosalind.info/glossary/optimal-alignment/

Figure 1. A genomic region
containing a CRISPR. Red
substrings correspond to CRISPR
repeats, and blue substrings
correspond to unique spacers.
Repeats are highly palindromic and
fold into a hairpin loop when
transcribed.

Problem

For the computation of an alignment score generalizing the edit alignment score, let denote the

score assigned to matched symbols, denote the score assigned to mismatched non-gap symbols,

and denote the score assigned a symbol matched to a gap symbol '-' (i.e., is a linear gap

penalty).

Given: Two DNA strings and in FASTA format (each of length at most 5000 bp).

Return: The maximum number of gap symbols that can appear in any maximum score alignment of

 and with score parameters satisfying , , and .

Sample Dataset

>Rosalind_92

AACGTA

>Rosalind_47

ACACCTA

Sample Output

3

Problem 89

Identifying Maximal Repeats

Spies in the War Against Phages

In “Locating Restriction Sites”, we saw

how one weapon used by bacteria in their

age-old fight with phages is the use of

restriction enzymes. Another defense

mechanism found in the genomes of most bacteria and

archaea centers on intervals of DNA called CRISPRs

(Clustered Regularly Interspaced Short Palindromic

Repeats), which allow the cell to distinguish its own DNA

from that of phages or plasmids.

Specifically, a CRISPR is an interval of DNA consisting of

identical repeats (approximately 23 to 47 bp long), alternating with unique intervals (approximately

21 to 72 bp long) called spacers; see Figure 1. Spacers correspond to fragments of foreign DNA

that were integrated into the genome between repeats and serve as a memory bank for genetic

material captured from invading phages. As a result, spacers can be used to recognize and silence

invasive elements.

Specifically, CRISPRs are transcribed into RNA molecules, each consisting of a spacer flanked by

m
d

g g

s t

s t m > 0 d < 0 g < 0

http://rosalind.info/media/problems/mrep/crispr.png
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/edit-alignment-score/
http://rosalind.info/glossary/gap-symbol/
http://rosalind.info/glossary/linear-gap-penalty/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/problems/revp/
http://rosalind.info/glossary/bacteriophage/
http://rosalind.info/glossary/restriction-enzyme/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/archaea/
http://rosalind.info/glossary/crispr/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/plasmid/
http://rosalind.info/glossary/repeat/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/spacer/
http://rosalind.info/media/problems/mrep/crispr.png
http://rosalind.info/glossary/rna-transcription/
http://rosalind.info/glossary/rna/

partial repeats. The small CRISPR RNAs, together with associated proteins translated from this

RNA, target foreign DNA that matches the CRISPR spacer. In eukaryotes, a similar process is

achieved by a process called RNA interference (RNAi).

To locate a CRISPR in a genome, we need to search for its repeats. We have already located long

repeats in “Finding the Longest Multiple Repeat”, but the case here is different because of the

repeats appearing in CRISPRS are relatively short. Instead, we are looking for repeated intervals

that cannot be lengthened in either direction (otherwise, we would intersect with a spacer).

Problem

A maximal repeat of a string is a repeated substring of having two occurrences and such

that and cannot be extended by one symbol in either direction in and still agree.

For example, "AG" is a maximal repeat in "TAGTTAGCGAGA" because even though the first two

occurrences of "AG" can be extended left into "TAG", the first and third occurrences differ on both

sides of the repeat; thus, we conclude that "AG" is a maximal repeat. Note that "TAG" is also a

maximal repeat of "TAGTTAGCGAGA", since its only two occurrences do not still match if we extend

them in either direction.

Given: A DNA string of length at most 1 kbp.

Return: A list containing all maximal repeats of having length at least 20.

Sample Dataset

TAGAGATAGAATGGGTCCAGAGTTTTGTAATTTCCATGGGTCCAGAGTTTTGTAATTTATTATATAGAGAT

AGAATGGGTCCAGAGTTTTGTAATTTCCATGGGTCCAGAGTTTTGTAATTTAT

Sample Output

TAGAGATAGAATGGGTCCAGAGTTTTGTAATTTCCATGGGTCCAGAGTTTTGTAATTTAT

ATGGGTCCAGAGTTTTGTAATTT

Hint

How can we use the suffix tree of to find maximal repeats?

Problem 90

Multiple Alignment

Comparing Multiple Strings Simultaneously

In “Consensus and Profile”, we generalized the notion of Hamming distance to find an average case

s t s t1 t2
t1 t2 s

s

s

s

http://rosalind.info/glossary/translation/
http://rosalind.info/glossary/eukaryote/
http://rosalind.info/glossary/rna-interference/
http://rosalind.info/problems/lrep/
http://rosalind.info/glossary/maximal-repeat/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/repeated-substring/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/suffix-tree/
http://rosalind.info/problems/cons/
http://rosalind.info/glossary/hamming-distance/

for a collection of nucleic acids or peptides. However, this method only worked if

the polymers had the same length. As we have already noted in “Edit Distance”,

homologous strands of DNA have varying lengths because of the effect of

mutations inserting and deleting intervals of genetic material; as a result, we need

to generalize the notion of alignment to cover multiple strings.

Problem

A multiple alignment of a collection of three or more strings is formed by adding gap symbols to the

strings to produce a collection of augmented strings all having the same length.

A multiple alignment score is obtained by taking the sum of an alignment score over all possible

pairs of augmented strings. The only difference in scoring the alignment of two strings is that two gap

symbols may be aligned for a given pair (requiring us to specify a score for matched gap symbols).

Given: A collection of four DNA strings of length at most 10 bp in FASTA format.

Return: A multiple alignment of the strings having maximum score, where we score matched

symbols 0 (including matched gap symbols) and all mismatched symbols -1 (thus incorporating a

linear gap penalty of 1).

Sample Dataset

>Rosalind_7

ATATCCG

>Rosalind_35

TCCG

>Rosalind_23

ATGTACTG

>Rosalind_44

ATGTCTG

Sample Output

-18

ATAT-CCG

-T---CCG

ATGTACTG

ATGT-CTG

Problem 91

Creating a Restriction Map

Genetic Fingerprinting

http://rosalind.info/glossary/nucleic-acid/
http://rosalind.info/glossary/peptide/
http://rosalind.info/problems/edit/
http://rosalind.info/glossary/homologous/
http://rosalind.info/glossary/mutation/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/multiple-alignment/
http://rosalind.info/glossary/gap-symbol/
http://rosalind.info/glossary/augmented-string/
http://rosalind.info/glossary/multiple-alignment-score/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/linear-gap-penalty/

Figure 1. In the simplified figure
above, we know that the dashed
segments came from a
chromosome; we desire a collection
of numbers whose differences
match the lengths of the dotted
lines, which will correspond to the
locations of restriction sites on the
unknown chromosome. Taken from
Jones & Pevzner, An Introduction to
Bioinformatics Algorithms.

Recall that a restriction enzyme cuts the endpoints of a specific interval of DNA,

which must form a reverse palindrome that typically has length 4 or 6. The interval

of DNA cleaved by a given restriction enzyme is called its recognition sequence.

A single human chromosome is so long that a given recognition sequence will

occur frequently throughout the chromosome (recall from “Expected Number of

Restriction Sites” that a recognition sequence would be expected to occur several

times even in a short chromosome). Nevertheless, the small-scale mutations that

create diversity in the human genome (chiefly SNPs) will cause each human to have a different

collection of recognition sequences for a given restriction enzyme.

Genetic fingerprinting is the term applied to the general process of forming a limited picture of a

person's genetic makeup (which was traditionally cheaper than sequencing). The earliest

application of genetic fingerprinting inexpensive enough to be widely used in common applications,

like forensics and paternity tests, relied on a process called restriction digest. In this technique, a

sample of DNA is replicated artificially, then treated with a given restriction enzyme; when the

enzyme cuts the DNA at restriction sites, it forms a number of fragments. A second process called

gel electrophoresis then separates these fragments along a membrane based on their size, with

larger pieces tending toward one end and smaller pieces tending toward the other. When the

membrane is stained or viewed with an X-ray machine, the fragments create a distinct banding

pattern, which typically differs for any two individuals.

These intervals can be thought of simply as the collection of distances between restriction sites in

the genome. Before the rapid advances of genome sequencing, biologists wanted to know if they

could use only these distances to reconstruct the actual locations of restriction sites in the

genome, forming a restriction map. Restriction maps were desired in the years before the advent

of sequencing, when any information at all about genomic makeup was highly coveted. The

application of forming a restriction map from cleaved restriction fragments motivates the following

problem.

Problem

For a set containing numbers, the difference multiset of

 is the multiset defined as the collection of all positive

differences between elements of . As a quick example, if

, then we will have that .

If contains elements, then will contain one element

for each pair of elements from , so that contains

elements (see combination statistic). You may note the

similarity between the difference multiset and the Minkowski

difference , which contains the elements of and

their negatives. For the above set , is

.

In practical terms, we can easily obtain a multiset

corresponding to the distances between restriction sites on a

chromosome. If we can find a set whose difference multiset is equal to , then will

represent possible locations of these restriction sites. For an example, consult Figure 1.

Given: A multiset containing positive integers for some positive integer .

Return: A set containing nonnegative integers such that .

Sample Dataset

X
X ΔX

X
X = {2, 4, 7} ΔX = {2, 3, 5}

X n ΔX
X ΔX ()n

2

X ⊖ X ΔX
X X ⊖ X

{−5, −3, −2, 2, 3, 5}

L

X ΔX L X

L ()n
2 n

X n ΔX = L

http://rosalind.info/media/problems/pdpl/restriction_map.png
http://rosalind.info/glossary/restriction-enzyme/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/reverse-palindrome/
http://rosalind.info/glossary/recognition-sequence/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/problems/eval/
http://rosalind.info/glossary/mutation/
http://rosalind.info/glossary/single-nucleotide-polymorphism/
http://rosalind.info/glossary/genetic-fingerprinting/
http://rosalind.info/glossary/genome-sequencing/
http://rosalind.info/glossary/restriction-digest/
http://rosalind.info/glossary/gel-electrophoresis/
http://rosalind.info/glossary/genome-sequencing/
http://rosalind.info/glossary/restriction-map/
http://rosalind.info/glossary/set/
http://rosalind.info/glossary/difference-multiset/
http://rosalind.info/glossary/multiset/
http://rosalind.info/glossary/combination/
http://rosalind.info/glossary/minkowski-difference/
http://rosalind.info/media/problems/pdpl/restriction_map.png

2 2 3 3 4 5 6 7 8 10

Sample Output

0 2 4 7 10

Problem 92

Counting Rooted Binary Trees

From Unrooted to Rooted Trees

Recall that a rooted binary tree is a binary tree for which the root is the only

node of degree 2. Such a tree differs from an unrooted binary tree only in the

existence of the root.

Different phylogenetic methods may be better suited to rooted or unrooted trees. If a method

produces an unrooted tree, then the root (i.e., the common ancestor of all taxa) could theoretically

be placed anywhere. Thus, there will be more rooted binary trees than unrooted binary trees on the

same number of taxa. The question is: how many more rooted trees are there?

Problem

As in the case of unrooted trees, say that we have a fixed collection of taxa labeling the leaves of a

rooted binary tree . You may like to verify that (by extension of “Counting Phylogenetic Ancestors”)

such a tree will contain internal nodes and total edges. Any edge will still encode a

split of taxa; however, the two splits corresponding to the edges incident to the root of will be equal.

We still consider two trees to be equivalent if they have the same splits (which requires that they must

also share the same duplicated split to be equal).

Let represent the total number of distinct rooted binary trees on labeled taxa.

Given: A positive integer ().

Return: The value of modulo 1,000,000.

Sample Dataset

4

Sample Output

15

n
T

n − 1 2n − 2
T

B(n) n

n n ≤ 1000

B(n)

http://rosalind.info/glossary/rooted-binary-tree/
http://rosalind.info/glossary/binary-tree/
http://rosalind.info/glossary/root/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/degree/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/leaf/
http://rosalind.info/problems/inod/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/split/
http://rosalind.info/glossary/incident/
http://rosalind.info/glossary/distinct/

Figure 1. Morgan's two experiments
on fruit fly eye color. In the first
experiment, a white-eyed male is
crossed with a purebred red-eyed
female; in the second experiment, a
red-eyed male is crossed with a
white-eyed female. The results of
Morgan's expermients demonstrate
that eye color must be encoded by a
recessive allele on the X
chromosome.

Problem 93

Sex-Linked Inheritance

Chromosomes Determine Sex

In “Independent Segregation of

Chromosomes”, we discussed how

chromosomes in diploid organisms form

pairs of homologs. It turns out that this is

not the case for one pair of chromosomes in animals. In

1905, Nettie Stevens and Edmund Wilson independently

discovered that male animals possess one chromosome

that is shorter than its partner, whereas female animals

instead have two long chromosomes. The shorter

chromosome earned the title of Y chromosome for its

stunted shape, whereas the longer chromosome became

known as the X chromosome. These two chromosomes

are aptly termed sex chromosomes, or allosomes, and

we write the female sex chromosome genotype as

and the male genotype as . The remaining

homologous chromosome pairs are called autosomes.

Sex chromosomes are still passed on to gametes based

on the outcome of a coin flip, but egg cells (deriving from

females) must always possess an X chromosome, so that

the sex of an individual is determined by whether it

receives an X or a Y chromosome from its father's sperm

cell.

Fast-forward five years to 1910 and the lab of Thomas Hunt Morgan, who is often considered the

first modern geneticist because of his tireless work to place Mendel's work on sound footing. One

of Morgan's many experiments with fruit flies (genus Drosophila) began as he noticed a number of

white-eyed males. When these white-eyed flies were crossed with purebred red-eyed females, their

progeny were all red-eyed, and yet crossing the second generation's red-eyed individuals with each

other produced some white-eyed males but exclusively red-eyed females. Strange results indeed.

Morgan's experiments are summarized in Figure 1, after which he concluded that the trait for eye

color in fruit flies must be sex linked, or encoded on a sex chromosome. More specifically, the

factor for white eye color is encoded by a recessive allele on the X chromosome. Because a male

only has one copy of the X chromosome, having only one recessive allele will cause the individual

to exhibit white eyes, whereas a female fly requires both copies of the recessive allele to possess

white eyes.

X-linked recessive traits are manifested in males much more often than in females, because a male

only needs to receive a recessive allele from his mother to exhibit the trait: in the case of genetic

conditions, half of all male children born to carrier mothers will inherit the condition.

Problem

XX
XY

A Pr(A ∣ B)

http://rosalind.info/media/problems/sexl/sex_linkage.png
http://rosalind.info/problems/indc/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/diploid-cell/
http://rosalind.info/glossary/homologous-chromosomes/
http://rosalind.info/glossary/y-chromosome/
http://rosalind.info/glossary/x-chromosome/
http://rosalind.info/glossary/sex-chromosome/
http://rosalind.info/glossary/genotype/
http://rosalind.info/glossary/autosome/
http://rosalind.info/glossary/gamete/
http://rosalind.info/media/problems/sexl/sex_linkage.png
http://rosalind.info/glossary/sex-linkage/
http://rosalind.info/glossary/factor/
http://rosalind.info/glossary/recessive-allele/
http://rosalind.info/glossary/genetic-carrier/

The conditional probability of an event given another event , written , is equal to

 divided by .

Note that if and are independent, then must be equal to , which

results in . This equation offers an intuitive view of independence: the probability

of , given the occurrence of event , is simply the probability of (which does not depend on).

In the context of sex-linked traits, genetic equilibrium requires that the alleles for a gene are

uniformly distributed over the males and females of a population. In other words, the distribution of

alleles is independent of sex.

Given: An array of length for which represents the proportion of males in a population

exhibiting the -th of total recessive X-linked genes. Assume that the population is in genetic

equilibrium for all genes.

Return: An array of length in which equals the probability that a randomly selected

female will be a carrier for the -th gene.

Sample Dataset

0.1 0.5 0.8

Sample Output

0.18 0.5 0.32

Problem 94

Phylogeny Comparison with Split Distance

Quantifying Binary Tree Comparison

We may often obtain two different phylogenies on the same collection of taxa from

different sets of data. As a result, we would like to have a way of quantifying how

much the two phylogenies differ. In the simplest case, we would like to compare

the characters of two phylogenies.

Recall from “Counting Unrooted Binary Trees” that two unrooted binary trees are equivalent when

they have the same set of splits; recall also (by extension of “Counting Phylogenetic Ancestors”)

that any unrooted binary tree on taxa must have nontrivial splits.

Problem

Define the split distance between two unrooted binary trees as the number of nontrivial splits

contained in one tree but not the other.

Formally, if denotes the number of nontrivial splits shared by unrooted binary trees and

, Then their split distance is .

A B Pr(A ∣ B)
Pr(A and B) Pr(B)

A B Pr(A and B) Pr(A) × Pr(B)
Pr(A ∣ B) = Pr(A)

A B A B

k

A n A[k]
k n

n

B n B[k]
k

n n − 3

s(,)T1 T2 T1
T2 (,) = 2(n − 3) − 2s(,)dsplit T1 T2 T1 T2

http://rosalind.info/glossary/conditional-probability/
http://rosalind.info/glossary/probabilistic-event/
http://rosalind.info/glossary/independent-events/
http://rosalind.info/glossary/genetic-equilibrium/
http://rosalind.info/glossary/array/
http://rosalind.info/glossary/genetic-equilibrium/
http://rosalind.info/glossary/genetic-carrier/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/character/
http://rosalind.info/problems/cunr/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/split/
http://rosalind.info/problems/inod/
http://rosalind.info/glossary/nontrivial-split/
http://rosalind.info/glossary/split-distance/

Given: A collection of at most 3,000 species taxa and two unrooted binary trees and on

these taxa in Newick format.

Return: The split distance .

Sample Dataset

dog rat elephant mouse cat rabbit

(rat,(dog,cat),(rabbit,(elephant,mouse)));

(rat,(cat,dog),(elephant,(mouse,rabbit)));

Sample Output

2

Problem 95

The Wright-Fisher Model of Genetic Drift

Hardy-Weinberg Revisited

The principle of genetic equilibrium is an idealistic model for population genetics

that simply cannot hold for all genes in practice. For one, evolution has proven too

powerful for equilibrium to possibly hold. At the same time, evolution works on the

scale of eons, and at any given moment in time, most populations are essentially

stable.

Yet we could overlook the inevitable effects of simple random chance in disrupting the allelic

frequency for a given gene, a phenomenon called genetic drift.

In this problem, we would like to obtain a simple mathematical model of genetic drift, and so we will

need to make a number of simplifying assumptions. First, assume that individuals from different

generations do not mate with each other, so that generations exist as discrete, non-overlapping

quantities. Second, rather than selecting pairs of mating organisms, we simply randomly select the

alleles for the individuals of the next generation based on the allelic frequency in the present

generation. Third, the population size is stable, so that we do not need to take into account the

population growing or shrinking between generations. Taken together, these three assumptions

make up the Wright-Fisher model of genetic drift.

Problem

Consider flipping a weighted coin that gives "heads" with some fixed probability (i.e., is not

necessarily equal to 1/2).

We generalize the notion of binomial random variable from “Independent Segregation of Chromosomes”

to quantify the sum of the weighted coin flips. Such a random variable takes a value of if a

sequence of independent "weighted coin flips" yields "heads" and "tails." We write that

T1 T2

(,)dsplit T1 T2

p p

X k
n k n − k

X ∈ Bin(n, p)

http://rosalind.info/glossary/newick-format/
http://rosalind.info/glossary/genetic-equilibrium/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/allele-frequency/
http://rosalind.info/glossary/genetic-drift/
http://rosalind.info/glossary/allele-frequency/
http://rosalind.info/glossary/wright-fisher-model/
http://rosalind.info/glossary/probability/
http://rosalind.info/glossary/binomial-random-variable/
http://rosalind.info/problems/indc/
http://rosalind.info/glossary/random-variable/
http://rosalind.info/glossary/independent-random-variables/

.

To quantify the Wright-Fisher Model of genetic drift, consider a population of diploid individuals,

whose chromosomes possess copies of the dominant allele. As in “Counting Disease

Carriers”, set . Next, recall that the next generation must contain exactly individuals.

These individuals' alleles are selected independently: a dominant allele is chosen with probability

, and a recessive allele is chosen with probability .

Given: Positive integers (), (), () and ().

Return: The probability that in a population of diploid individuals initially possessing copies of

a dominant allele, we will observe after generations at least copies of a recessive allele. Assume

the Wright-Fisher model.

Sample Dataset

4 6 2 1

Sample Output

0.772

Problem 96

Alignment-Based Phylogeny

From Characters Toward Alignments

In “Creating a Character Table from Genetic Strings”, we used strings to create a

collection of characters from which we could create a phylogeny. However, the

strings all had to share the same length, which was a problem. In practice, we

would like to create a phylogeny from genetic strings having differing lengths;

specifically, our aim is to construct a phylogeny from a multiple alignment.

Unfortunately, constructing a phylogeny from the ground up based only on an alignment can be

difficult. In order to produce an efficient solution, we will need to assume that the structure of the

phylogeny has already been provided (perhaps from character-based methods), and our aim instead

is to reconstruct the genetic strings corresponding to the internal nodes (i.e., ancestors) in the tree.

The ancestor strings should have the property that the total number of point mutations separating

adjacent nodes in the tree is minimized (in keeping with parsimony).

Problem

Say that we have taxa represented by strings with a multiple alignment inducing

corresponding augmented strings .

Recall that the number of single-symbol substitutions required to transform one string into another is

X ∈ Bin(n, p)

N
2N m

p = m
2N

N

2N
p 1 − p

N N ≤ 7 m m ≤ 2N g g ≤ 6 k k ≤ 2N

N m
g k

n , , … ,s1 s2 sn

, , … ,s̄1 s̄2 s̄n

http://rosalind.info/glossary/diploid-cell/
http://rosalind.info/problems/afrq/
http://rosalind.info/glossary/dominant-allele/
http://rosalind.info/glossary/recessive-allele/
http://rosalind.info/problems/cstr/
http://rosalind.info/glossary/character/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/multiple-alignment/
http://rosalind.info/glossary/internal-node/
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/adjacent-nodes/
http://rosalind.info/glossary/parsimony/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/augmented-string/

the Hamming distance between the strings (see “Counting Point Mutations”). Say that we have a

rooted binary tree containing at its leaves and additional strings

 at its internal nodes, including the root (the number of internal nodes is

 by extension of “Counting Phylogenetic Ancestors”). Define as the sum of

over all edges in :

Thus, our aim is to minimize .

Given: A rooted binary tree on () species, given in Newick format, followed by a

multiple alignment of () augmented DNA strings having the same length (at most 300 bp)

corresponding to the species and given in FASTA format.

Return: The minimum possible value of , followed by a collection of DNA strings to be

assigned to the internal nodes of that will minimize (multiple solutions will exist, but you

need only output one).

Sample Dataset

(((ostrich,cat)rat,(duck,fly)mouse)dog,(elephant,pikachu)hamster)robot;

>ostrich

AC

>cat

CA

>duck

T-

>fly

GC

>elephant

-T

>pikachu

AA

Sample Output

8

>rat

AC

>mouse

TC

>dog

AC

>hamster

AT

>robot

AC

Note

Given internal strings minimizing , the alignment between any two adjacent strings is not

T , , … ,s̄1 s̄2 s̄n

, , … ,s̄n+1 s̄n+2 s̄2n−1
n − 1 (T)dH (,)dH s̄i s̄j

{ , }s̄i s̄j T

(T) = (,)dH ∑
{ , }∈E(T)s̄ i s̄ j

dH s̄i s̄j

(T)dH

T n n ≤ 500
m m ≤ n

(T)dH
T (T)dH

(T)dH

http://rosalind.info/glossary/hamming-distance/
http://rosalind.info/problems/hamm/
http://rosalind.info/glossary/rooted-binary-tree/
http://rosalind.info/glossary/leaf/
http://rosalind.info/problems/inod/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/newick-format/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/internal-node/

necessarily an optimal global paired alignment. In other words, it may not be the case that

 is equal to the edit distance .

Problem 97

Assessing Assembly Quality with N50 and N75

How Well Assembled Are Our Contigs?

As we have stated, the goal of genome sequencing is to create contigs that are

as long as possible. Thus, after fragment assembly, it is important to possess

statistics quantifying how well-assembled our contigs are.

First and foremost, we demand a measure of what percentage of the assembled genome is made

up of long contigs. Our first question is then: if we select contigs from our collection, how long do

the contigs need to be to cover 50% of the genome?

Problem

Given a collection of DNA strings representing contigs, we use the N statistic NXX (where XX ranges

from 01 to 99) to represent the maximum positive integer such that the total number of nucleotides

of all contigs having length is at least XX% of the sum of contig lengths. The most commonly

used such statistic is N50, although N75 is also worth mentioning.

Given: A collection of at most 1000 DNA strings (whose combined length does not exceed 50 kbp).

Return: N50 and N75 for this collection of strings.

Sample Dataset

GATTACA

TACTACTAC

ATTGAT

GAAGA

Sample Output

7 6

Extra Information

For an explanation of the results obtained in the sample above, contigs of length at least 7 total 7 +

9 = 16 bp, which is more than 50% of the total 27). Contigs of length at least 8 total only 9 bp (less

than 50%).

(,)dH s̄i s̄j (,)dE si sj

L
≥ L

http://rosalind.info/glossary/edit-distance/
http://rosalind.info/glossary/genome-sequencing/
http://rosalind.info/glossary/contig/
http://rosalind.info/glossary/genome-assembly/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/n-statistic/
http://rosalind.info/glossary/n-statistic/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/base-pair/

Contigs of length at least 6 total 6 + 7 + 9 = 22 bp, which is more than 75% of all base pairs.

Contigs of length at least 7 total only 16 bp (less than 75%).

Problem 98

Fixing an Inconsistent Character Set

Pitfalls of Character-Based Phylogeny

In “Character-Based Phylogeny”, we asked for the construction of an unrooted

binary tree from a consistent character table. However, the assumption of

consistency is often inaccurate, as many character collections derived from real

data are inconsistent, owing to the fact that the reinforcement of mutations by

evolution can cause species to lose features over time, evolve to produce the same character on

different evolutionary paths, or revert to a past character. This issue arises even when using

genetic characters taken from SNPs, as point mutations can be undone.

As an example of why using characters can lead us astray, let's return to our first example of a

character introduced in “Character-Based Phylogeny”. There, we learned that dinosaurs may be

divided into the two Orders Saurischia and Ornithischia depending on hip-bone shape: the former

have "lizard hips," whereas the latter have "bird hips." Adding to this information the fact that birds

are widely believed to descend from dinosaurs, we would guess that birds derive from

ornithischians. Yet this is not the case: birds derive from theropods, a suborder of the saurischians!

The shared hip bone shape with ornithischians is either simply coincidence or caused by the

"convergence" of bird hip shape with that of ornithischians along their different evolutionary paths.

Another example of a character that would be ill-suited for phylogenetic analysis is the presence or

absence of wings in insects. Many wingless modern species wingless modern species have

evolved from wildly differing ancestors that lost their wings independently of each other.

If we divided a collection of taxa based on either of these characters, many different taxa would be

lumped together when they do not in fact share a recent common ancestor, which could have

disastrous consequences when trying to assign characters to the splits of a phylogeny.

The moral is that we must select our characters carefully, although the Catch-22 is that we don't

know in advance which characters are the most appropriate to use until we actually start

constructing phylogenies. At the same time, if we err on the side of caution, then using too few

characters might not provide us with enough splits to generate an unrooted binary tree, thus

inducing an enormous number of possible phylogenies (recall “Counting Unrooted Binary Trees” and

how quickly the total number of trees grows with the number of taxa).

Problem

A submatrix of a matrix is a matrix formed by selecting rows and columns from and taking

only those entries found at the intersections of the selected rows and columns. We may also think of a

submatrix as formed by deleting the remaining rows and columns from .

Given: An inconsistent character table on at most 100 taxa.

Return: A submatrix of representing a consistent character table on the same taxa and formed

M M

M

C

C ′

http://rosalind.info/problems/chbp/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/consistent-character-table/
http://rosalind.info/glossary/mutation/
http://rosalind.info/glossary/revert/
http://rosalind.info/glossary/single-nucleotide-polymorphism/
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/problems/chbp/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/split/
http://rosalind.info/glossary/split/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/problems/cunr/
http://rosalind.info/glossary/submatrix/
http://rosalind.info/glossary/consistent-character-table/

by deleting a single row of . (If multiple solutions exist, you may return any one.)

Sample Dataset

100001

000110

111000

100111

Sample Output

000110

100001

100111

Problem 99

Wright-Fisher's Expected Behavior

Reaching Population Equilibrium

In “The Wright-Fisher Model of Genetic Drift”, we introduced the Wright-Fisher

model of genetic drift. Although the effects of genetic drift are inevitable, we should

be able to quantify how many alleles for a given trait will remain in the next

generation.

Intuitively, because Wright-Fisher demands that we randomly and independently select alleles for

the next generation based off the allele frequency of the present generation, we would hope that on

average this frequency would illustrate a stabilizing effect: that is, the expected frequency in the

next generation should equal the allele frequency in the current generation. In this problem, we will

see if the mathematics matches our intuition.

Problem

In “The Wright-Fisher Model of Genetic Drift”, we generalized the concept of a binomial random variable

 as a "weighted coin flip." It is only natural to calculate the expected value of such a random

variable.

For example, in the case of unweighted coin flips (i.e.,), our intuition would indicate that

 is ; what should be the expected value of a binomial random variable?

Given: A positive integer () followed by an array of length ()

containing numbers between and . Each element of can be seen as representing a probability

corresponding to an allele frequency.

Return: An array of length for which is the expected value of ; in terms of

Wright-Fisher, it represents the expected allele frequency of the next generation.

C

Bin(n, p)

p = 1/2
E(Bin(n, 1/2) n/2

n n ≤ 1000000 P m m ≤ 20
0 1 P

B m B[k] Bin(n, P [k])

http://rosalind.info/problems/wfmd/
http://rosalind.info/glossary/wright-fisher-model/
http://rosalind.info/glossary/genetic-drift/
http://rosalind.info/glossary/genetic-drift/
http://rosalind.info/glossary/allele/
http://rosalind.info/glossary/independent-random-variables/
http://rosalind.info/glossary/allele/
http://rosalind.info/glossary/allele-frequency/
http://rosalind.info/problems/wfmd/
http://rosalind.info/glossary/binomial-random-variable/
http://rosalind.info/glossary/expected-value/
http://rosalind.info/glossary/array/

Sample Dataset

17

0.1 0.2 0.3

Sample Output

1.7 3.4 5.1

Problem 100

The Founder Effect and Genetic Drift

Strength in Numbers

Charles Darwin is known first and foremost for his notion of natural selection,

the elegant statistical fact that changes in populations are attributable to the

observation that organisms better equipped to handle their environment are more

likely to survive and reproduce, thus passing on their beneficial traits to the next

generation. As a result of natural selection, populations can change greatly over a long time.

A lesser known aspect of Darwin's evolutionary theory dictates how new species are actually

created. Darwin noted that the only way for a population to grow so distinct that it would actually

split off and form a new species would be if the population were isolated for a very long period. This

notion that isolation forms new species was validated by Darwin's observation that the tiny

Galapagos islands in the South Pacific enjoy a diversity of species rivaling that of a much larger

ecosystem.

Isolated populations also tend to be small, strengthening the effects of genetic drift. To take an

extreme example, consider a population of only 2 organisms that are both heterozygous for a given

factor. Note that there is a 1/8 chance that 2 offspring of these organisms will possess only

recessive alleles or only dominant alleles for the factor, thus wiping out the other allele completely.

In general, the principle stating that mutations (both positive and negative) can randomly attain

higher proportions in small, isolated communities than they would in large populations, is known as

the founder effect. An infamous example of the founder effect on human populations occurs in

Pennsylvania, where the Amish community is at risk for a much greater incidence of Ellis-van

Creveld syndrome, a single gene disorder causing a slew of defects, including additional fingers

and toes (polydactyly). The condition has been traced to a single couple in the original Amish

settlers, and it is still preserved in elevated percentages because of the community's isolationism.

In this problem, we would like to apply the Wright-Fisher model of genetic drift to understand the

power of the founder effect. Specifically, we will quantify the likelihood that an allele will be

completely annihilated in a small population after a number of generations.

Problem

A

http://rosalind.info/glossary/natural-selection/
http://rosalind.info/glossary/genetic-drift/
http://rosalind.info/glossary/heterozygous/
http://rosalind.info/glossary/factor/
http://rosalind.info/glossary/recessive-allele/
http://rosalind.info/glossary/dominant-allele/
http://rosalind.info/glossary/founder-effect/
http://rosalind.info/glossary/ellis-van-creveld-syndrome/
http://rosalind.info/glossary/single-gene-disorder/
http://rosalind.info/glossary/wright-fisher-model/

Given: Two positive integers and , followed by an array containing integers between 0

and . represents the number of recessive alleles for the -th factor in a population of

diploid individuals.

Return: An matrix for which represents the common logarithm of the probability

that after generations, no copies of the recessive allele for the -th factor will remain in the

population. Apply the Wright-Fisher model.

Sample Dataset

4 3

0 1 2

Sample Output

0.0 -0.463935575821 -0.999509892866

0.0 -0.301424998891 -0.641668367342

0.0 -0.229066698008 -0.485798552456

Problem 101

Global Alignment with Scoring Matrix and Affine Gap

Penalty

Mind the Gap

In “Global Alignment with Scoring Matrix”, we considered a linear gap penalty, in

which each inserted/deleted symbol contributes the exact same amount to the

calculation of alignment score. However, as we mentioned in “Global Alignment

with Constant Gap Penalty”, a single large insertion/deletion (due to a

rearrangement is then punished very strictly, and so we proposed a constant gap penalty.

Yet large insertions occur far more rarely than small insertions and deletions. As a result, a more

practical method of penalizing gaps is to use a hybrid of these two types of penalties in which we

charge one constant penalty for beginning a gap and another constant penalty for every additional

symbol added or deleted.

Problem

An affine gap penalty is written as , where is the length of the gap, is a positive

constant called the gap opening penalty, and is a positive constant called the gap extension

penalty.

We can view the gap opening penalty as charging for the first gap symbol, and the gap extension

penalty as charging for each subsequent symbol added to the gap.

N m A k
2N A[j] j N

m × k B Bi,j
i j

a + b ⋅ (L − 1) L a
b

http://rosalind.info/glossary/array/
http://rosalind.info/glossary/recessive-allele/
http://rosalind.info/glossary/diploid-cell/
http://rosalind.info/glossary/matrix/
http://rosalind.info/glossary/common-logarithm/
http://rosalind.info/problems/glob/
http://rosalind.info/glossary/linear-gap-penalty/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/problems/gcon/
http://rosalind.info/glossary/genome-rearrangement/
http://rosalind.info/glossary/constant-gap-penalty/
http://rosalind.info/glossary/gap/
http://rosalind.info/glossary/affine-gap-penalty/
http://rosalind.info/glossary/affine-gap-penalty/
http://rosalind.info/glossary/affine-gap-penalty/
http://rosalind.info/glossary/gap-symbol/

For example, if and , then a gap of length 1 would be penalized by 11 (for an average

cost of 11 per gap symbol), whereas a gap of length 100 would have a score of 110 (for an average

cost of 1.10 per gap symbol).

Consider the strings "PRTEINS" and "PRTWPSEIN". If we use the BLOSUM62 scoring matrix and an

affine gap penalty with and , then we obtain the following optimal alignment.

 PRT---EINS

 ||| |||

 PRTWPSEIN-

Matched symbols contribute a total of 32 to the calculation of the alignment's score, and the gaps cost

13 and 11 respectively, yielding a total score of 8.

Given: Two protein strings and in FASTA format (each of length at most 100 aa).

Return: The maximum alignment score between and , followed by two augmented strings

and representing an optimal alignment of and . Use:

The BLOSUM62 scoring matrix.

Gap opening penalty equal to 11.

Gap extension penalty equal to 1.

Sample Dataset

>Rosalind_49

PRTEINS

>Rosalind_47

PRTWPSEIN

Sample Output

8

PRT---EINS

PRTWPSEIN-

Problem 102

Genome Assembly with Perfect Coverage and Repeats

Repeats: A Practical Assembly Difficulty

Genome assembly is straightforward if we know in advance that the de Bruijn

graph has exactly one directed cycle (see “Genome Assembly with Perfect

Coverage”).

In practice, a genome contains repeats longer than the length of the k-mers that we wish to use to

assemble the genome. Such repeats increase the number of cycles present in the de Bruijn graph

a = 11 b = 1

a = 11 b = 1

s t

s t s′

t′ s t

http://rosalind.info/glossary/blosum62/
http://rosalind.info/glossary/scoring-matrix/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/blosum62/
http://rosalind.info/glossary/scoring-matrix/
http://rosalind.info/glossary/genome-assembly/
http://rosalind.info/glossary/de-bruijn-graph/
http://rosalind.info/glossary/directed-cycle/
http://rosalind.info/problems/pcov/
http://rosalind.info/glossary/repeat/
http://rosalind.info/glossary/k-mer/
http://rosalind.info/glossary/cycle/
http://rosalind.info/glossary/de-bruijn-graph/

for these -mers, thus preventing us from assembling the genome uniquely.

For example, consider the circular string (ACCTCCGCC), along with a collection of error-free

reads of length 3, exhibiting perfect coverage and taken from the same strand of an interval of DNA.

The corresponding de Bruijn graph (where edges correspond to 3-mers and nodes correspond

to 2-mers) has at least two directed cycles: one giving the original circular string (ACCTCCGCC),

and another corresponding to the misfit (ACCGCCTCC).

Also, note that these cycles are not simple cycles, as the node corresponding to "CC" is visited

three times in each cycle.

To generalize the problem of genome assembly from a de Bruijn graph to the case of genomes

containing repeats, we therefore must add a constraint: in a cycle corresponding to a valid

assembly, every 3-mer must appear as many times in the cycle as it does in our collection of

reads (which correspond to all 3-mers in the original string).

Problem

Recall that a directed cycle is a cycle in a directed graph in which the head of one edge is equal to the

tail of the following edge.

In a de Bruijn graph of -mers, a circular string is constructed from a directed cycle

 is given by . That is, because

the final symbols of overlap with the first symbols of , we simply tack on the -th

symbol of to , then iterate the process.

For example, the circular string assembled from the cycle "AC" "CT" "TA" "AC" is simply

(ACT). Note that this string only has length three because the 2-mers "wrap around" in the string.

If every -mer in a collection of reads occurs as an edge in a de Bruijn graph cycle the same number

of times as it appears in the reads, then we say that the cycle is "complete."

Given: A list of error-free DNA -mers () taken from the same strand of a

circular chromosome (of length).

Return: All circular strings assembled by complete cycles in the de Bruijn graph of . The

strings may be given in any order, but each one should begin with the first -mer provided in the

input.

Sample Dataset

CAG

AGT

GTT

TTT

TTG

TGG

GGC

GCG

CGT

GTT

TTC

TCA

CAA

AAT

ATT

k

S

B2

k s
→ →. . . → →s1 s2 si s1 + [k]+. . . + [k] + [k]s1 s2 si−k si−k+1

k − 1 s1 k − 1 s2 k
s2 s

→ → →

k

Sk+1 (k + 1) k ≤ 5
≤ 50

Bk Sk+1
(k + 1)

http://rosalind.info/glossary/circular-string/
http://rosalind.info/glossary/read/
http://rosalind.info/glossary/perfect-coverage/
http://rosalind.info/glossary/strand/
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/edge/
http://rosalind.info/glossary/node/
http://rosalind.info/glossary/simple-cycle/
http://rosalind.info/glossary/directed-cycle/
http://rosalind.info/glossary/directed-graph/
http://rosalind.info/glossary/head/
http://rosalind.info/glossary/tail/
http://rosalind.info/glossary/circular-string/

TTC
TCA

Sample Output

CAGTTCAATTTGGCGTT

CAGTTCAATTGGCGTTT

CAGTTTCAATTGGCGTT

CAGTTTGGCGTTCAATT

CAGTTGGCGTTCAATTT

CAGTTGGCGTTTCAATT

Problem 103

Overlap Alignment

Overlapping Reads with Errors

As also mentioned in “Error Correction in Reads”, the sequencing machines that

identify reads can make errors. However, the problem that we considered in

“Genome Assembly as Shortest Superstring” assumed that all reads are error-

free.

Thus, rather than trying to overlap reads exactly, we will instead do so approximately. The key to

do this is to move toward methods that incorporate alignments. Yet neither global nor local

alignment is appropriate for this task. Global alignment will attempt to align the entire reads, when

we know that only the overlapping parts of the reads are relevant. For that matter, we may identify

an optimal local alignment that does not correspond to an overlap.

As a result, we need a specific type of local alignment that aligns only the overlapping parts of two

strings.

Problem

An overlap alignment between two strings and is a local alignment of a suffix of with a prefix of

. An optimal overlap alignment will therefore maximize an alignment score over all such substrings of

 and .

The term "overlap alignment" has also been used to describe what Rosalind defines as a semiglobal

alignment. See “Semiglobal Alignment” for details.

Given: Two DNA strings and in FASTA format, each having length at most 10 kbp.

Return: The score of an optimal overlap alignment of and , followed by an alignment of a suffix

 of and a prefix of achieving this optimal score. Use an alignment score in which matching

symbols count +1, substitutions count -2, and there is a linear gap penalty of 2. If multiple optimal

alignments exist, then you may return any one.

s t s
t
s t

s t

s t
s′ s t′ t

http://rosalind.info/problems/corr/
http://rosalind.info/glossary/genome-sequencing/
http://rosalind.info/glossary/read/
http://rosalind.info/problems/long/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/local-alignment/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/overlap-alignment/
http://rosalind.info/glossary/suffix/
http://rosalind.info/glossary/prefix/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/semiglobal-alignment/
http://rosalind.info/problems/smgb/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/linear-gap-penalty/

Sample Dataset

>Rosalind_54

CTAAGGGATTCCGGTAATTAGACAG

>Rosalind_45

ATAGACCATATGTCAGTGACTGTGTAA

Sample Output

1

ATTAGAC-AG

AT-AGACCAT

Citation

This problem follows Jones & Pevzner, An Introduction to Bioinformatics Algorithms, problem 6.22.

Problem 104

Quartet Distance

Another Tree Distance

In “Phylogeny Comparison with Split Distance”, we examined the split distance for

comparison of different phylogenies on the same collection of taxa.

Yet quartet-based phylogeny offers another way in which two phylogenies can be

compared (see “Quartets” and “Counting Quartets”). Specifically, we wonder how many quartets

can be inferred from one tree but not inferred from the other.

Problem

In “Counting Quartets”, we found an expression for , the number of quartets that can be inferred

from an unrooted binary tree containing taxa.

If and are both unrooted binary trees on the same taxa, then we now let denote

the number of inferred quartets that are common to both trees. The quartet distance between and

, is the number of quartets that are only inferred from one of the trees. More precisely,

.

Given: A list containing taxa () and two unrooted binary trees and on the given

taxa. Both and are given in Newick format.

Return: The quartet distance .

q(T)
n

T1 T2 n q(,)T1 T2
T1

T2 (,)dq T1 T2
(,) = q() + q() − 2q(,)dq T1 T2 T1 T2 T1 T2

n n ≤ 2000 T1 T2
T1 T2

(,)dq T1 T2

http://rosalind.info/problems/sptd/
http://rosalind.info/glossary/split-distance/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/quartet-based-phylogeny/
http://rosalind.info/problems/qrt/
http://rosalind.info/problems/cntq/
http://rosalind.info/glossary/quartet/
http://rosalind.info/problems/cntq/
http://rosalind.info/glossary/unrooted-binary-tree/
http://rosalind.info/glossary/quartet-distance/
http://rosalind.info/glossary/newick-format/

Figure 1. Global, local, and fitting
alignments of strings v =
GTAGGCTTAAGGTTA and w =
TAGATA with respect to mismatch
score. Note that in the fitting
alignment, a substring of v must be
aligned against all of w. Taken from
Jones & Pevzner, An Introduction to
Bioinformatics Algorithms

Sample Dataset

A B C D E

(A,C,((B,D),E));

(C,(B,D),(A,E));

Sample Output

4

Problem 105

Finding a Motif with Modifications

Finding Mutated Motifs

We have discussed at length the importance of motif finding in biology for genetic

strings. However, searching for exact substring matches is of little use in

applications because a motif can vary under the effect of mutation. Fortunately,

we already possess functions like edit distance for quantifying the similarity of two

strings.

Furthermore, recall that each chromosome is made up of a large number of genes (on average,

each human chromosome contains over 1,000 genes). Therefore, to determine whether a newly

sequenced chromosome contains a given gene, neither local nor global alignment applies.

One possible alignment variant for finding genes is semiglobal alignment, which we discuss in

“Semiglobal Alignment”; yet semiglobal alignment only allows us to disregard gaps at the end of

the alignment. To find a known gene in a new chromosome, we need to instead align the gene

against intervals of the chromosome, a problem that calls for an entirely new algorithmic variation of

alignment.

Problem

Given a string and a motif , an alignment of a substring of

against all of is called a fitting alignment. Our aim is to

find a substring of that maximizes an alignment score

with respect to .

Note that more than one such substring of may exist,

depending on the particular strings and alignment score used.

One candidate for scoring function is the one derived from edit

distance; In this problem, we will consider a slightly different

alignment score, in which all matched symbols count as +1

and all mismatched symbols (including insertions and

deletions) receive a cost of -1. Let's call this scoring function

s t s
t

s′ s
t

s

http://rosalind.info/media/problems/sims/global_local_fitting_alignments.png
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/mutation/
http://rosalind.info/glossary/edit-distance/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/chromosome/
http://rosalind.info/glossary/gene/
http://rosalind.info/glossary/genome-sequencing/
http://rosalind.info/glossary/local-alignment/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/semiglobal-alignment/
http://rosalind.info/problems/smgb/
http://rosalind.info/glossary/gap/
http://rosalind.info/glossary/fitting-alignment/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/edit-distance/

the mismatch score. See Figure 1 for a comparison of global, local, and fitting alignments with

respect to mismatch score.

Given: Two DNA strings and , where has length at most 10 kbp and represents a motif of

length at most 1 kbp.

Return: An optimal fitting alignment score with respect to the mismatch score defined above,

followed by an optimal fitting alignment of a substring of against . If multiple such alignments exist,

then you may output any one.

Sample Dataset

>Rosalind_54

GCAAACCATAAGCCCTACGTGCCGCCTGTTTAAACTCGCGAACTGAATCTTCTGCTTCACGGTGAAAGTAC

CACAATGGTATCACACCCCAAGGAAAC

>Rosalind_46

GCCGTCAGGCTGGTGTCCG

Sample Output

5

ACCATAAGCCCTACGTG-CCG

GCCGTCAGGC-TG-GTGTCCG

Citation

This problem follows Jones & Pevzner, An Introduction to Bioinformatics Algorithms, Problem 6.23.

Problem 106

Semiglobal Alignment

Gaps on the Ends are Free

We have covered both global and local alignments. However, sometimes we need

a hybrid approach that avoids the weaknesses of these two methods. One such

alternate approach is that of fitting alignments outlined in “Finding a Motif with

Modifications”.

Another tactic is to allow ourselves to trim off gaps appearing on the ends of a global alignment for

free; this is relevant if one of our strings to be aligned happens to contain additional symbols on the

ends that are not relevant for the particular alignment at hand.

Problem

s t s t

s t

http://rosalind.info/glossary/mismatch-score/
http://rosalind.info/media/problems/sims/global_local_fitting_alignments.png
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/local-alignment/
http://rosalind.info/glossary/fitting-alignment/
http://rosalind.info/problems/sims/
http://rosalind.info/glossary/gap/

A semiglobal alignment of strings and is an alignment in which any gaps appearing as prefixes

or suffixes of and do not contribute to the alignment score.

Semiglobal alignment has sometimes also been called "overlap alignment". Rosalind defines overlap

alignment differently (see “Overlap Alignment”).

Given: Two DNA strings and in FASTA format, each having length at most 10 kbp.

Return: The maximum semiglobal alignment score of and , followed by an alignment of and

achieving this maximum score. Use an alignment score in which matching symbols count +1,

substitutions count -1, and there is a linear gap penalty of 1. If multiple optimal alignments exist, then

you may return any one.

Sample Dataset

>Rosalind_79

CAGCACTTGGATTCTCGG

>Rosalind_98

CAGCGTGG

Sample Output

4

CAGCA-CTTGGATTCTCGG

---CAGCGTGG--------

Citation

This problem follows Jones & Pevzner, An Introduction to Bioinformatics Algorithms, Problem 6.24.

Problem 107

Finding All Similar Motifs

The Case of Mutated Repeats

In “Finding a Motif with Modifications”, we considered a problem in which we were

given a motif and a long string (perhaps representing a genome), and we aimed to

find the "closest" substring of the long string to the motif. In that problem,

"closest" was defined as a minimum with respect to edit distance.

Yet there may be multiple substring candidates from the genome that achieve the minimum

distance to the motif; this situation might occur in practice when the motif forms a repeat that

occurs multiple times with variations deriving from mutations.

In this problem, we would like to find all substrings of a genome that are within a certain fixed

distance of the desired motif.

s t
s t

s t

s t s t

http://rosalind.info/glossary/semiglobal-alignment/
http://rosalind.info/glossary/gap/
http://rosalind.info/glossary/prefix/
http://rosalind.info/glossary/suffix/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/overlap-alignment/
http://rosalind.info/problems/oap/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/linear-gap-penalty/
http://rosalind.info/problems/sims/
http://rosalind.info/glossary/motif/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/genome/
http://rosalind.info/glossary/substring/
http://rosalind.info/glossary/edit-distance/
http://rosalind.info/glossary/repeat/
http://rosalind.info/glossary/mutation/

Problem

Given: A positive integer (), a DNA string of length at most 5 kbp representing a motif,

and a DNA string of length at most 50 kbp representing a genome.

Return: All substrings of such that the edit distance is less than or equal to . Each

substring should be encoded by a pair containing its location in followed by its length.

Sample Dataset

2

ACGTAG

ACGGATCGGCATCGT

Sample Output

1 4

1 5

1 6

Problem 108

Local Alignment with Affine Gap Penalty

Building Upon Local Alignments

We have thus far worked with local alignments with a linear gap penalty and

global alignments with affine gap penalties (see “Local Alignment with Scoring

Matrix” and “Global Alignment with Scoring Matrix and Affine Gap Penalty”).

It is only natural to take the intersection of these two problems and find an optimal local alignment

given an affine gap penalty.

Problem

Given: Two protein strings and in FASTA format (each having length at most 10,000 aa).

Return: The maximum local alignment score of and , followed by substrings and of and ,

respectively, that correspond to the optimal local alignment of and . Use:

The BLOSUM62 scoring matrix.

Gap opening penalty equal to 11.

Gap extension penalty equal to 1.

If multiple solutions exist, then you may output any one.

k k ≤ 50 s
t

t′ t (s,)dE t′ k
t

s t

s t r u s t
s t

http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/kbp/
http://rosalind.info/glossary/location/
http://rosalind.info/glossary/local-alignment/
http://rosalind.info/glossary/linear-gap-penalty/
http://rosalind.info/glossary/alignment/
http://rosalind.info/glossary/affine-gap-penalty/
http://rosalind.info/problems/loca/
http://rosalind.info/problems/gaff/
http://rosalind.info/glossary/protein-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/blosum62/
http://rosalind.info/glossary/scoring-matrix/
http://rosalind.info/glossary/affine-gap-penalty/
http://rosalind.info/glossary/affine-gap-penalty/

Sample Dataset

>Rosalind_8

PLEASANTLY

>Rosalind_18

MEANLY

Sample Output

12

LEAS

MEAN

Problem 109

Isolating Symbols in Alignments

How Much Does it Cost to Align Two Symbols?

As we saw in “Counting Optimal Alignments”, there will usually be a huge number

of different optimal alignments of two given strings. In this problem, which

represents a first attempt to understand how much optimal alignments can differ,

we will select two symbols at a time from the two strings and ask how much the

maximum alignment score can differ from the optimal score if we demand that these two symbols

must be aligned (i.e., implying that one symbol must be substituted for the other).

Problem

Say that we have two strings and of respective lengths and and an alignment score. Let's

define a matrix corresponding to and by setting equal to the maximum score of any

alignment that aligns with . So each entry in can be equal to at most the maximum score

of any alignment of and .

Given: Two DNA strings and in FASTA format, each having length at most 1000 bp.

Return: The maximum alignment score of a global alignment of and , followed by the sum of all

elements of the matrix corresponding to and that was defined above. Apply the mismatch score

introduced in “Finding a Motif with Modifications”.

Sample Dataset

>Rosalind_35

ATAGATA

>Rosalind_5

s t m n
M s t Mj,k

s[j] t[k] M
s t

s t

s t
M s t

http://rosalind.info/problems/ctea/
http://rosalind.info/glossary/optimal-alignment/
http://rosalind.info/glossary/string/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/alignment-score/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/problems/sims/

Figure 1. Illustration of an amino
acid's reversing substitution after
two point mutations.

ACAGGTA

Sample Output

3

-139

Citation

This problem follows Jones & Pevzner, An Introduction to Bioinformatics Algorithms, Problem 6.21

Hint

For the sample dataset

Problem 110

Identifying Reversing Substitutions

Reversions Complicate Phylogenies

In “Fixing an Inconsistent Character Set”,

we mentioned how the construction of a

phylogeny can be complicated by a the

reversion of a character to a past state.

For that matter, in calculating Hamming distance and edit

distance, the assumption of parsimony required us to

assume that if some nucleotide base or amino acid is

aligned with an identical symbol in two genetic strings,

then it has not changed on the evolutionary path between

the two taxa.

However, this model is too strict in practice, where a base

or amino acid can change to another state and then

change back as the result of two point mutations, which is

called a reversing substitution; see Figure 1. In the case

of DNA, the presence of only four bases makes randomly occurring reversing substitutions

common; these substitutions will carry over into amino acid language via transcription and

M =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

3
0

−1
−4
−7
−10
−11

0
3
0

−1
−4
−5

−10

−1
0
3
0

−3
−6
−5

−4
−1
−2
3
2

−3
−6

−5
−4
−1
0
3
0

−1

−10
−7
−6
−3
0
3

−2

−11
−10
−7
−6
−3
−2
3

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

http://rosalind.info/media/problems/rsub/reversing_substitution.png
http://rosalind.info/problems/cset/
http://rosalind.info/glossary/phylogeny/
http://rosalind.info/glossary/revert/
http://rosalind.info/glossary/hamming-distance/
http://rosalind.info/glossary/edit-distance/
http://rosalind.info/glossary/parsimony/
http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/amino-acid/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/taxon/
http://rosalind.info/glossary/point-mutation/
http://rosalind.info/glossary/reversing-substitution/
http://rosalind.info/media/problems/rsub/reversing_substitution.png
http://rosalind.info/glossary/dna/
http://rosalind.info/glossary/rna-transcription/

translation.

Unfortunately, with the possible exception of experimental evolution in bacteria, we lack the luxury

of knowing the ancestral state of a nucleic acid strand. Instead, we must infer its most probable

ancestor from homologous strands. To do so, we may use characters to construct a phylogeny

(see “Character-Based Phylogeny”), then apply alignment-based phylogeny to infer strings for the

tree's internal nodes (see “Alignment-Based Phylogeny”). Only once we have an adequate picture

of the entire phylogeny, including its internal nodes, can we hope to identify reversing substitutions.

Problem

For a rooted tree whose internal nodes are labeled with genetic strings, our goal is to identify

reversing substitutions in . Assuming that all the strings of have the same length, a reversing

substitution is defined formally as two parent-child string pairs and along with a position

index , where:

there is a path in from down to ;

; and

if is on the path connecting to , then .

In other words, the third condition demands that a reversing substitution must be contiguous: no other

substitutions can appear between the initial and reversing substitution.

Given: A rooted binary tree with labeled nodes in Newick format, followed by a collection of at

most 100 DNA strings in FASTA format whose labels correspond to the labels of . We will assume

that the DNA strings have the same length, which does not exceed 400 bp).

Return: A list of all reversing substitutions in (in any order), with each substitution encoded by

the following three items:

the name of the species in which the symbol is first changed, followed by the name of the species

in which it changes back to its original state

the position in the string at which the reversing substitution occurs; and

the reversing substitution in the form original_symbol->substituted_symbol->reverted_symbol.

Sample Dataset

(((ostrich,cat)rat,mouse)dog,elephant)robot;

>robot

AATTG

>dog

GGGCA

>mouse

AAGAC

>rat

GTTGT

>cat

GAGGC

>ostrich

GTGTC

>elephant

AATTC

Sample Output

T
T T

(s, t) (v, w)
i

T s w
s[i] = w[i] ≠ v[i] = t[i]

u t v t[i] = u[i]

T
T

T

http://rosalind.info/glossary/translation/
http://rosalind.info/glossary/nucleic-acid/
http://rosalind.info/glossary/homologous/
http://rosalind.info/problems/chbp/
http://rosalind.info/glossary/alignment-based-phylogeny/
http://rosalind.info/glossary/internal-node/
http://rosalind.info/problems/alph/
http://rosalind.info/glossary/rooted-tree/
http://rosalind.info/glossary/genetic-string/
http://rosalind.info/glossary/parent/
http://rosalind.info/glossary/child/
http://rosalind.info/glossary/rooted-binary-tree/
http://rosalind.info/glossary/newick-format/
http://rosalind.info/glossary/dna-string/
http://rosalind.info/glossary/fasta-format/
http://rosalind.info/glossary/base-pair/
http://rosalind.info/glossary/position/

dog mouse 1 A->G->A

dog mouse 2 A->G->A

rat ostrich 3 G->T->G

rat cat 3 G->T->G

dog rat 3 T->G->T

