Bioinformatics Programming 2013

Perl - Regular Expression

Chia-Lang Hsu (§F 2% EF)
Department of Life Science,
National Taiwan University

Regular Expression (regex)

e A regular expression is a string of characters that
define the pattern or patterns you are viewing.
e For example: check if a valid email address
AA-Z0-9._%+-]+\@[A-Z0-9.-1+\.[A-Z]{2,4}$
e Applications:
e Web application
e Text mining
e Bioinformatics: Motif match

e
PROSITE patterns

e Rules:
e Each position is separated by a hyphen
e One character denotes residuum at a given position
e [...] denoted a set of allowed amino acids
e (n) denotes repeat of n times
e (n,m) denoted repeat between n and m inclusive
e X — any character

e For example:
e ATP/GTP binding motive [SG]-X(4)-G-K-[DT]
SGMVQGKT, GAKASGKD, or GUCDEGKT ...

(-,

e

Regex references

Understand Your Data and
Be More Productive

Mastering ¥ ‘@'{;\ e
Regular
Expressions

O'REILLY" Jeffrey EF. Fried!

Regular Expressions jor Perl, C, PHP,
Python, Java, and NET

Regular

Expression

Pocket Reference

f Tony Stubblebine

O'REILLY;,

e

Regex in Perl

expression | matches...

abc abc (that exact character sequence, but anywhere in the string)

Mabc abc at the beginning of the string

abc$ abc at the end of the string

alb either of a and b

~abclabc$ |the string abc at the beginning or at the end of the string

ab{2,4}c |an a followed by two, three or four b’s followed by a c

ah{2}c an a followed by at least two b’s followed by a c

ab*c an a followed by any number (zero or more) of b’s followed by a ¢

ab+c an a followed by one or more b’s followed by a ¢

ab?c an a followed by an optional b followed by a c; that is, either abc or ac

a.c an a followed by any single character (not newline) followed by a c

a\.c a.c exactly

[abc] anv one ofa, b and ¢

[Aa]bc either of Abc and abc

[abc]+ any (nonempty) string of a’s, b’s and 's (such as a, abba, achbabcacaa)

[*abc]+ |any (nonempty) string which does not contain any of a, b and c (such as defz)

\d\d any two decimal digits, such as 42; same as \d{2}

\w+ a “word™: a nonempty sequence of alphanumeric characters and low lines
(underscores), such as foo and 12bar8 and foo_1

100\s*mk the strings.l()() and mk optionally separated by any amount of white space (spaces,
tabs, newlines)

abc\b abc when followed by a word boundary (e.g. in abe! but not in abed)

perl\B perl when nor followed by a word boundary (e.g. in perlert but not in perl stuff)

e

Metacharacters

Modifier Description

\ Quote next character

n Match beginning-of-string
$ Match end-of-string

[]

Match any character except newline
Alternation
Grouping and save subpattern

Character class

e

Metacharacters

Modifier Description

\W matches any word character or alphanumeric character,
including the underscore.

\W matches any non-word character or nonalphanumeric
character, and excludes the underscore.

\d matches a digit character that is equivalent to [0-9]

\D matches a non-digit character that is equivalent to [*0-9].

\s matches any white space character, including space, tab,
form feed, and so on, and is equivalent to [\f\n\r\t\v].

\S matches any character that is not a white space character
and is equivalent to [*\fA\n\r\t\v].

\b matches a word boundary:
1. "er\b" matches the "er" in "never*
2. "er\b" does not match the "er" in "verb"

\B matches a non-word boundary:

1. "er\B" matches the "er" in "verb,,
2. "er\B" does not match the "er" in "never"

e

Quantifier

e Quantifiers can be used to specify how many of the
previous thing you want to match on.

Character Description

& Matches the previous atom zero or more times

+ Matches the previous atom one or more times

? Matches the previous atom zero or one times

{n} Matches the previous atom exact n times

{n,} Matches the previous atom n or more times

{n,m} Matches the previous atom between n and m times

e
Syntax of regex in Perl

Binding Pattern
operator modifiers
1
$string =~ m/PATTERN/
!
Regex
operator

* m/PATTERN/ : match operator
o s/PATTERN/ : substitution operator
o tr/PATTERN/ : translation operator

e

Match operator

e The match operator, m//, is used to match a string
or statement to a regular expression.

my $text = "Here is a text";
if ($text =~ m/apple/)

print "Found the text\n";

print "Not found\n";

5 R
'123456789";
if ($text =~ m/~\d+$/){print "It's a number.\n";}

BEEE B FERE

my $text = "3.1415926";
if ($text =~ m/AM\d+\.\d*$/){print "It's a number\n”;}

B EBFRIHYIEEER
my $text = "-3.14159";
if ($text =~ m/~A[+-]\d+\.\d*$/){print "It's a number\n";}

n R EARERIALY -
\d: e EE -
-G RERSN -

$: fET BAVAERBIALLE
* REORIEEL -

0: K& BT -

©@O0®ee o

e

Match operator modifiers

Modifier Description

i Makes the match case insensitive

m Specifies that if the string has newline or carriage return
characters, the ~ and $ operators will now match against a
newline boundary, instead of a string boundary

0 Evaluates the expression only once

S Allows use of . to match a newline character

X Allows you to use white space in the expression for clarity

g Globally finds all matches

cg

Allows the search to continue even after a global match fails

-
-
-
-
-
-
-
-
-
-
-
rd

Example - using modifiers

use strict;
my $text = "Fool feel thk hEEk dump FEEtball BOOK";

my $count = 1;
while ($text =~ m/oo/g) #LZFPAANFKTS

{
print "Found 00.\n";

$count ++;

=] 0 1 B W k)

& WO 0d

my $count2 = 1; . _
while ($text =~ m/oo/gi) #EFZFIBNFESLRABAX/NE

{
print "Found 0o0.\n";

$count2 ++;

=l g BB WM

(4]

B D:\Dwimperl\perl\bin\perl.exe test.pl

(]

(%]

e

e
Capture matched patterns

my Stext = "there are 20 male and 30 female in 1 bus";

while ($text =~ m/ /q)
{

print "$1

}

male

female
bus

\d: {56 —(EEF -

\s: 54 {T-fa/whitespaceF T (25 [~ tabZ) -
W SR T -

+ JFE—KEBGEEK -

®
@
©
@
® (): R A RRA

e

Return matched patterns

my Stext = "20.5 adds 40.15 eqauls 60.55";

my Ra = (Stext =~ m/ ([] /qg):

20.5 40.15 60

print "@a\n";

@ \d e —EEFE

@\ ﬁé~ﬂ%ﬁ??ﬁo
@ +:fFEa—XEEHEXK -

@ [|: F—EFT-

® (): Tl AERA -

e
Position of matched pattern

e Positions of what was matched with the @- and @+
arrays

e $-[0] is the position of the start of the entire match
and $+[0] is the position of the end

e $-[n] is the position of the start of the $n match and
$+[n] is the position of the end

use strict;
my = "ACGTTGTCAGGACGGGACAGCGCGGCGTATGCGCG" ;

while (=~ m/CG/q)
{

print "$-[0] [0]

Search for AT-rich motifs

my SDNA = "ATTATACAATTGCGTACTATATATACCGTATAACGTTTTAAAAAG";

while (SDNA =~ m/ /qg)
{
my SATmatch = $1;
my $ATlength = length ($ATmatch) ;

my S$end = pos($DNA); ## pos() return the end-position
of matched pattern

my $start = $end - $ATlength + 1;

print "AT-rich motif: $ATmatch ";
print "of length $ATlength from $start to $end\n";

motif: ATTATA of length 6 from 1 to 6
motif: AATT of length 4 from 8 to 11
motif: TATATATA of length 8 from 18 to 25
motif: TATAA of length 5 from 29 to 33
motif: TTTTAAAA of length 8 from 36 to 43

Search for TATA-box

my Spromoter = "GCGACCACCTTGGTTCAGCAGTATAAAAACGCGCTTGGCG";

if ($promoter =~ m/ (TATA
{
my $TATAbox = $1;
my STATAlen = length ($STATAbox) ;
my $TATAlocation = index($promoter, S$TATAbox) ;

print "Found a TATA-box: S$TATAbox "
print "at location $TATAlocation 1"

r

}

else

{
print "No TATA box was found.

}

TATA-box search on GCGACCACCTTGGTITCAGCAGTATAAAAACGCGCTTGGCG

Found a TATA-box:
at location 21

e

Search for Mirror Repeats (MR)

MR MR

\ \
[| [|

$dna = ATACGTCATGCACTTCTACGTATCGGTGCA

2’

$1
A

$dna =~ m/é(.)(.)(.)(.)(.*)\5\4\3\23/83
$2 $3 $4 $5

Search for Mirror Repeats (MR)
MR MR

\ I
(\ r \

ATACGTCATGCACTTCTACGTATCGGTGCA

my $dna = "ATACGTCATGCACTTCTACGTATCGGTGCA";

while ($dna =~ m/
capture entire match
any 4 nucleotides

GREEDY! 0 or more of any nucleotide
recall in mirror-order

‘ end of entire match
) I=

my S$mirrorRepeat 1 ;

=5
my S$foundBP = pos($dna)-length (SmirrorRepeat) ;
Smi

print "Found MR: rrorRepeat at bp $foundBP

Found MR: ACGTCATGCACTTCTACGTATCGGTGCA at bp 2

/

Search for Mirror Repeats (MR)
MR MR

\ I
(\ r \

ATACGTCATGCACTTCTACGTATCGGTGCA

my $dna = "ATACGTCATGCACTTCTACGTATCGGTGCA";

while ($dna =~ m/

capture entire match
any 4 nucleotides

—) NOT GREEDY! 0 or more minimally
recall in mirror-order
end of entire match

/xg
)

my SmirrorRepeat 1 ;

= 5
my $foundBP = pos($dna)-length (SmirrorRepeat) ;
s$mi

print "Found MR: rrorRepeat at bp $foundBP

Found MR: ACGTCATGCA at bp 2
Found MR: ACGTATCGGTGCA at bp 17

Match a minimal piece of string

a?? = match 'a' O or 1 times. Try O first, then 1.

a*? = match 'a' O or more times, i.e., any number of
times, but as fow times ae possible.

a+? = match 'a' 1 or more times, i.e., at least once, but
as few times as possible.

a{n,m}? = match at least n times, not more than m
times, as few times as possible.

a{n,}? = match at least n times, but as few times as
possible.

a{n}? = match exactl ,y n times. Because we match
exactly n times, a{n}? is equivalent to a{n} and is just
there for notational Con5|stency

e

Search for open reading frame (ORF)

Stop codon
Start codon (TAG, TGA, & TAA)
- -

$dna = ACTGACATGCGCCGTGACGATAAATTTGGCCGATAATGGACCGAG
\

J

|
M EEL

/oo

$dna =~ m/(?:ATG)(?:...)*?(2:TAG|TGA|TAA)/;

Search for open reading frame (ORF)

my $seq = "ACTGACATGCGCCGTGACGATAAATTTGGCCGATAATGGACCGAG";

if ($seq =~ m/
ATG start codon

3-bp codon

zero or more times, non-greedy

stop codon

#
#
#
#

TAG | TGA | TAA
/x
)
{

print "Open reading frame found.'\n";

}

else

{

print "No open reading frame found. '\ n";

}

Review

regex

meaning

TATA

match four consecutive letters, TATA

TAG|TGA|TAA

match TAG or TGA or TAA

match any character but not a newline character

match any two characters (independently, not necessarily the same character)

capture (remember) and match any character

match any character O or more times (each is independent of others)

capture and match any character 0 or more times

.t match any character 1 or more times (each is independent of others)
(-+) capture and match any character 1 or more times
\1 recall the first captured (parenthesized) group
\2 recall the second captured group
\n recall the nth captured group
.? optional, match any character O or 1 time
T? optional, match a T or nothing
(CAAT)? Optional, match CAAT or nothing
A{3,7} match between 3 and 7 As
A{3,} match of 3 or more As
[CG] match any one of the characters in the set,aCoraG
TATA[AT] match TATA followedby an AoraT
[*CG] match any one character that is not in the set, nota C and not a G

[CG]{5,10}

match a C or a G between 5 and 10 times

~ATG string begins with ATG
TAGS string ends with TAG
\s match any whitespace character (tab, space, newline)
\s match any character that is not whitespace
\d match any character that is a digit, same as [0123456789]
\D match any character that is not a digit
\w match any one “word” character (includes alphanumeric, plus *_’)
\W match any one nonword character

4 ™
Substitution operator

e The match operator, s//, is really just an extension
of the match operator that allows you to replace the
text matched with some new text.

e The basic form of the operator is:

e s/PATTERN/REPLACEMENT/Aimosxge
Modifiers

my = "This is a DOG";

print "Origin: . R
Origin: This is a DOG

—— SJDDGJCAT; : Next: This is a CAT

print "Next:

e

Substitution operator modifiers

Modifier Description

i Makes the match case insensitive

m Specifies that if the string has newline or carriage return
characters, the ~ and $ operators will now match against a
newline boundary, instead of a string boundary

0] Evaluates the expression only once

S Allows use of . to match a newline character

X Allows you to use white space in the expression for clarity

g Replaces all occurrences of the found expression with the
replacement text

e Evaluates the replacement as if it were a Perl statement, and

uses its return value as the replacement text

4 N

“e” modifier for substitution operator

my $text = "Here is a house";

print "Origin: Stext\n";
Origin: Here 1is a house

Stext =~ s/ $1)/qg:; Next: uc(Here) uc(is) uc(a) uc(house)

my Stext = "Here is a house";

print "Origin: Stext\n"; Origin: Here is a house
Next: HERE IS A HOUSE

text =~ s/ /uc(51)/ge;

.
r

print "Next: Stext

e

Transforming format

HHEAFZT"08/20/2013", I7E:"2013-08-20"
my $date = '©8/28/2013";

$date =~ s/(\d+)\/(\d+)\/(\d+)/EE-F-/;

print "SfERI\n";

Transcribing DNA into RNA

Example:
DNA | 2 || ATCEECTTGGAGAR
RNA - AUCGGCUUGGAGAA

use strict;

my $dna "ATCGGCTTGGAGAA",;

my $rna = $dna;

$rna =~ s/T/U/g;

print "DNA: ". $dna.
print "RNA: ". $rna. "

e

Count CpG

Example:
Sequence =2 ATCGGGCGCGCCGGGTTATAGCGGATAGGCGAG

use strict;

my $seq = "ATCGGGCGCGCCGGGTTATAGCGGATAGGCGAG";

my $count = $seq =~ s/CG/CG/g;

print "ifdelil}d\n" ;

4 ™
Translation operator

e Translation is similar, but not identical, to the
principles of substitution, but unlike substitution,
translation (or transliteration) does not use regular
expressions for its search on replacement values.

e The basic form of the operator is:
o tr/PATTERN/REPLACEMENT/cds
e y/PATTERN/REPLACEMENT/Acds) Modifiers

my = 'The cat sat on the mat’';

print "Origin: " Origin: The cat sat on the mat
Translated: The cot sot on the mot

=~ tr/a/o/;:

print "Translated:

e

Translation operator modifiers

Modifier Description
(¢ Complement SEARCHLIST.
d Delete found but unreplaced characters.

S Squash duplicate replaced characters.

Example: using modifiers for translation
operator

The /d modifier deletes the characters matching SEARCHLIST that do not have a
corresponding entry in REPLACEMENTLIST. For example:

$!/usr/bin/perl

Sstring = "the cat =sat on the mat.';
tring =~ tr/a-z/b/d; " g
FeEing = mx/ame// RBaAAYENIKFT -

print "Sstringhn";

Thi=s will produce following result
B b b.

The last modifier, /s, removes the duplicate sequences of characters that were replaced,
50:

#!/usr/bin/perl

Sstring = "food';

Sstring = "food';
Sstring =~ trfa-z/a-z/s=;

print Sstring;

This will produce following result
fod

™

Complementary strand of a DNA

Example:

5" -ATCGGCTTGGAGAA-3'

AT
31 -TAGCCGAACCTCTIIT -5/

use strict;
my $dna = "ATCGGCTTGGAGAA";
my $revcom = reverse $dna;

I\l NEI It~ / ACGTacgt/TGCAtgca/F

print "5'-" . $dna . "-3'\n";

print "5'-" . $revcom . "-3'\n";

